Abstract
The maximum clique problem is a well known NP-Hard problem with applications in data mining, network analysis, information retrieval and many other areas related to the World Wide Web. There exist several algorithms for the problem with acceptable runtimes for certain classes of graphs, but many of them are infeasible for massive graphs. We present a new exact algorithm that employs novel pruning techniques and is able to quickly find maximum cliques in large sparse graphs. Extensive experiments on different kinds of synthetic and real-world graphs show that our new algorithm can be orders of magnitude faster than existing algorithms. We also present a heuristic that runs orders of magnitude faster than the exact algorithm while providing optimal or near-optimal solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andrade, D., Resende, M., Werneck, R.: Fast local search for the maximum independent set problem. Journal of Heuristics 18, 525–547 (2012)
Augustson, J.G., Minker, J.: An analysis of some graph theoretical cluster techniques. J. ACM 17, 571–588 (1970)
Babel, L., Tinhofer, G.: A branch and bound algorithm for the maximum clique problem. Mathematical Methods of Operations Research 34, 207–217 (1990)
Batagelj, V., Mrvar, A.: Pajek datasets (2006), http://vlado.fmf.uni-lj.si/pub/networks/data/
Boginski, V., Butenko, S., Pardalos, P.M.: Statistical analysis of financial networks. Computational Statistics & Data Analysis 48, 431–443 (2005)
Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The Maximum Clique Problem. In: Handbook of Combinatorial Optimization, pp. 1–74. Kluwer Academic Publishers (1999)
Bonner, R.E.: On some clustering techniques. IBM J. Res. Dev. 8, 22–32 (1964)
Brouwer, A.E., Shearer, J.B., Sloane, N.J.A., Smith, W.D.: A new table of constant weight codes. IEEE Transactions on Information Theory, 1334–1380 (1990)
Carraghan, R., Pardalos, P.: An exact algorithm for the maximum clique problem. Oper. Res. Lett. 9, 375–382 (1990)
Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms, ACM Comput. Surv. 38 (2006)
Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Transactions on Mathematical Software (TOMS) 38, 1:1–1:25 (2011)
Domingos, P., Richardson, M.: Mining the network value of customers. In: Proc. of the 7th ACM SIGKDD KDD 2001, KDD 2001, San Francisco, California, pp. 57–66. ACM, New York (2001)
Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. In: Proc. of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM 1999, Cambridge, Massachusetts, United States, pp. 251–262. ACM (1999)
Ferronato, M., Janna, C., Gambolati, G.: Mixed constraint preconditioning in computational contact mechanics. Computer Methods in Applied Mechanics and Engineering 197, 3922–3931 (2008)
Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)
Garey, M.R., Johnson, D.S.: W. H. Freeman & Co., New York, NY, USA (1979)
Grosso, A., Locatelli, M., Pullan, W.: Simple ingredients leading to very efficient heuristics for the maximum clique problem. Journal of Heuristics 14, 587–612 (2008)
Gutin, G., Gross, J.L., Yellen, J.: Handbook of graph theory. Discrete Mathematics & Its Applications. CRC Press (2004)
Horaud, R., Skordas, T.: Stereo correspondence through feature grouping and maximal cliques. IEEE Trans. Pattern Anal. Mach. Intell. 11, 1168–1180 (1989)
Johnson, D., Trick, M.A. (eds.): Cliques, coloring and satisfiability: Second dimacs implementation challenge. DIMACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 26 (1996)
Konc, J., Janežič, D.: An improved branch and bound algorithm for the maximum clique problem. MATCH Commun. Math. Comput. Chem. 58, 569–590 (2007)
Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Extracting Large-Scale Knowledge Bases from the Web. In: VLDB 1999, pp. 639–650 (1999)
Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD 2005, Chicago, Illinois, USA, pp. 177–187. ACM, New York (2005)
Leydesdorff, L.: On the normalization and visualization of author co-citation data: Salton’s cosine versus the jaccard index. J. Am. Soc. Inf. Sci. Technol. 59, 77–85 (2008)
Li, C.-M., Quan, Z.: An efficient branch-and-bound algorithm based on maxsat for the maximum clique problem (2010)
Newman, M.E.J.: Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences of the United States of America 101, 5200–5205 (2004)
Niskanen, S., Östergård, P.R.J.: Cliquer user’s guide, version 1.0, Tech. Rep. T48, Communications Laboratory, Helsinki University of Technology, Espoo, Finland (2003)
Östergård, P.R.J.: A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120, 197–207 (2002)
Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)
Pardalos, P.M., Xue, J.: The maximum clique problem. Journal of Global Optimization 4, 301–328 (1994)
Pavan, M., Pelillo, M.: A new graph-theoretic approach to clustering and segmentation. In: Proc. of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003, pp. 145–152. IEEE Computer Society, Washington, DC (2003)
Prosser, P.: Exact algorithms for maximum clique: A computational study, arXiv preprint arXiv:1207.4616v1 (2012)
Sadi, S., Öğüdücü, S., Uyar, A.S.: An efficient community detection method using parallel clique-finding ants. In: Proc. of IEEE Congress on Evol. Comp., pp. 1–7 (July 2010)
San Segundo, P., Rodríguez-Losada, D., Jiménez, A.: An exact bit-parallel algorithm for the maximum clique problem. Comput. Oper. Res. 38, 571–581 (2011)
Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a maximum clique. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 278–289. Springer, Heidelberg (2003)
Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and faster branch-and-bound algorithm for finding a maximum clique. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 191–203. Springer, Heidelberg (2010)
Matsunaga, T., Yonemori, C., Tomita, E., Muramatsu, M.: Clique-based data mining for related genes in a biomedical database. BMC Bioinformatics 10, 205 (2009)
Turner, J.: Almost all k-colorable graphs are easy to color. Journal of Algorithms 9, 63–82 (1988)
van Rietbergen, B., Weinans, H., Huiskes, R., Odgaard, A.: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. Journal of Biomechanics 28, 69–81 (1995)
Wang, L., Zhou, L., Lu, J., Yip, J.: An order-clique-based approach for mining maximal co-locations. Information Sciences 179, 3370–3382 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Pattabiraman, B., Patwary, M.M.A., Gebremedhin, A.H., Liao, Wk., Choudhary, A. (2013). Fast Algorithms for the Maximum Clique Problem on Massive Sparse Graphs. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds) Algorithms and Models for the Web Graph. WAW 2013. Lecture Notes in Computer Science, vol 8305. Springer, Cham. https://doi.org/10.1007/978-3-319-03536-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-03536-9_13
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03535-2
Online ISBN: 978-3-319-03536-9
eBook Packages: Computer ScienceComputer Science (R0)