Skip to main content

Fast Algorithms for the Maximum Clique Problem on Massive Sparse Graphs

  • Conference paper
Algorithms and Models for the Web Graph (WAW 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8305))

Included in the following conference series:

Abstract

The maximum clique problem is a well known NP-Hard problem with applications in data mining, network analysis, information retrieval and many other areas related to the World Wide Web. There exist several algorithms for the problem with acceptable runtimes for certain classes of graphs, but many of them are infeasible for massive graphs. We present a new exact algorithm that employs novel pruning techniques and is able to quickly find maximum cliques in large sparse graphs. Extensive experiments on different kinds of synthetic and real-world graphs show that our new algorithm can be orders of magnitude faster than existing algorithms. We also present a heuristic that runs orders of magnitude faster than the exact algorithm while providing optimal or near-optimal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrade, D., Resende, M., Werneck, R.: Fast local search for the maximum independent set problem. Journal of Heuristics 18, 525–547 (2012)

    Article  Google Scholar 

  2. Augustson, J.G., Minker, J.: An analysis of some graph theoretical cluster techniques. J. ACM 17, 571–588 (1970)

    Article  MATH  Google Scholar 

  3. Babel, L., Tinhofer, G.: A branch and bound algorithm for the maximum clique problem. Mathematical Methods of Operations Research 34, 207–217 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Batagelj, V., Mrvar, A.: Pajek datasets (2006), http://vlado.fmf.uni-lj.si/pub/networks/data/

  5. Boginski, V., Butenko, S., Pardalos, P.M.: Statistical analysis of financial networks. Computational Statistics & Data Analysis 48, 431–443 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The Maximum Clique Problem. In: Handbook of Combinatorial Optimization, pp. 1–74. Kluwer Academic Publishers (1999)

    Google Scholar 

  7. Bonner, R.E.: On some clustering techniques. IBM J. Res. Dev. 8, 22–32 (1964)

    Article  MATH  Google Scholar 

  8. Brouwer, A.E., Shearer, J.B., Sloane, N.J.A., Smith, W.D.: A new table of constant weight codes. IEEE Transactions on Information Theory, 1334–1380 (1990)

    Google Scholar 

  9. Carraghan, R., Pardalos, P.: An exact algorithm for the maximum clique problem. Oper. Res. Lett. 9, 375–382 (1990)

    Article  MATH  Google Scholar 

  10. Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms, ACM Comput. Surv. 38 (2006)

    Google Scholar 

  11. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Transactions on Mathematical Software (TOMS) 38, 1:1–1:25 (2011)

    MathSciNet  Google Scholar 

  12. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proc. of the 7th ACM SIGKDD KDD 2001, KDD 2001, San Francisco, California, pp. 57–66. ACM, New York (2001)

    Google Scholar 

  13. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. In: Proc. of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM 1999, Cambridge, Massachusetts, United States, pp. 251–262. ACM (1999)

    Google Scholar 

  14. Ferronato, M., Janna, C., Gambolati, G.: Mixed constraint preconditioning in computational contact mechanics. Computer Methods in Applied Mechanics and Engineering 197, 3922–3931 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  16. Garey, M.R., Johnson, D.S.: W. H. Freeman & Co., New York, NY, USA (1979)

    Google Scholar 

  17. Grosso, A., Locatelli, M., Pullan, W.: Simple ingredients leading to very efficient heuristics for the maximum clique problem. Journal of Heuristics 14, 587–612 (2008)

    Article  Google Scholar 

  18. Gutin, G., Gross, J.L., Yellen, J.: Handbook of graph theory. Discrete Mathematics & Its Applications. CRC Press (2004)

    Google Scholar 

  19. Horaud, R., Skordas, T.: Stereo correspondence through feature grouping and maximal cliques. IEEE Trans. Pattern Anal. Mach. Intell. 11, 1168–1180 (1989)

    Article  Google Scholar 

  20. Johnson, D., Trick, M.A. (eds.): Cliques, coloring and satisfiability: Second dimacs implementation challenge. DIMACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 26 (1996)

    Google Scholar 

  21. Konc, J., Janežič, D.: An improved branch and bound algorithm for the maximum clique problem. MATCH Commun. Math. Comput. Chem. 58, 569–590 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Extracting Large-Scale Knowledge Bases from the Web. In: VLDB 1999, pp. 639–650 (1999)

    Google Scholar 

  23. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD 2005, Chicago, Illinois, USA, pp. 177–187. ACM, New York (2005)

    Chapter  Google Scholar 

  24. Leydesdorff, L.: On the normalization and visualization of author co-citation data: Salton’s cosine versus the jaccard index. J. Am. Soc. Inf. Sci. Technol. 59, 77–85 (2008)

    Article  Google Scholar 

  25. Li, C.-M., Quan, Z.: An efficient branch-and-bound algorithm based on maxsat for the maximum clique problem (2010)

    Google Scholar 

  26. Newman, M.E.J.: Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences of the United States of America 101, 5200–5205 (2004)

    Article  Google Scholar 

  27. Niskanen, S., Östergård, P.R.J.: Cliquer user’s guide, version 1.0, Tech. Rep. T48, Communications Laboratory, Helsinki University of Technology, Espoo, Finland (2003)

    Google Scholar 

  28. Östergård, P.R.J.: A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120, 197–207 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  30. Pardalos, P.M., Xue, J.: The maximum clique problem. Journal of Global Optimization 4, 301–328 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pavan, M., Pelillo, M.: A new graph-theoretic approach to clustering and segmentation. In: Proc. of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003, pp. 145–152. IEEE Computer Society, Washington, DC (2003)

    Google Scholar 

  32. Prosser, P.: Exact algorithms for maximum clique: A computational study, arXiv preprint arXiv:1207.4616v1 (2012)

    Google Scholar 

  33. Sadi, S., Öğüdücü, S., Uyar, A.S.: An efficient community detection method using parallel clique-finding ants. In: Proc. of IEEE Congress on Evol. Comp., pp. 1–7 (July 2010)

    Google Scholar 

  34. San Segundo, P., Rodríguez-Losada, D., Jiménez, A.: An exact bit-parallel algorithm for the maximum clique problem. Comput. Oper. Res. 38, 571–581 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a maximum clique. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 278–289. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  36. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and faster branch-and-bound algorithm for finding a maximum clique. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 191–203. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  37. Matsunaga, T., Yonemori, C., Tomita, E., Muramatsu, M.: Clique-based data mining for related genes in a biomedical database. BMC Bioinformatics 10, 205 (2009)

    Article  Google Scholar 

  38. Turner, J.: Almost all k-colorable graphs are easy to color. Journal of Algorithms 9, 63–82 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. van Rietbergen, B., Weinans, H., Huiskes, R., Odgaard, A.: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. Journal of Biomechanics 28, 69–81 (1995)

    Article  Google Scholar 

  40. Wang, L., Zhou, L., Lu, J., Yip, J.: An order-clique-based approach for mining maximal co-locations. Information Sciences 179, 3370–3382 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Pattabiraman, B., Patwary, M.M.A., Gebremedhin, A.H., Liao, Wk., Choudhary, A. (2013). Fast Algorithms for the Maximum Clique Problem on Massive Sparse Graphs. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds) Algorithms and Models for the Web Graph. WAW 2013. Lecture Notes in Computer Science, vol 8305. Springer, Cham. https://doi.org/10.1007/978-3-319-03536-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03536-9_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03535-2

  • Online ISBN: 978-3-319-03536-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics