Multicriteria Decision Making Based on Qualitative Assessments and Relational Belief

  • Amel Ennaceur
  • Zied Elouedi
  • Eric Lefevre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8249)


This paper investigates a multi-criteria decision making met-hod in an uncertain environment, where the uncertainty is represented using the belief function framework. Indeed, we suggest a novel methodology that tackles the challenge of introducing uncertainty in both the criterion and the alternative levels. On the one hand and in order to judge the criteria weights, our proposed approach suggests to use preference relations to elicitate the decision maker assessments. Therefore, the Analytic Hierarchy Process with qualitative belief function framework is adopted to get adequate numeric representation. On the other hand, our model assumes that the evaluation of each alternative with respect to each criterion may be imperfect and it can be represented by a basic belief assignment. That is why, a new aggregation procedure that is able to rank alternatives is introduced.


Analytic Hierarchy Process Criterion Weight Belief Function Multicriteria Decision Analytic Hierarchy Process Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben Yaghlane, A., Denoeux, T., Mellouli, K.: Constructing belief functions from expert opinions. In: Proceedings of the 2nd International Conference on Information and Communication Technologies: from Theory to Applications (ICTTA 2006), Damascus, Syria, pp. 75–89 (2006)Google Scholar
  2. 2.
    Beynon, M., Curry, B., Morgan, P.: The Dempster-Shafer theory of evidence: An alternative approach to multicriteria decision modelling. OMEGA 28(1), 37–50 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boujelben, M.A., Smet, Y.D., Frikha, A., Chabchoub, H.: A ranking model in uncertain, imprecise and multi-experts contexts: The application of evidence theory. International Journal of Approximate Reasoning 52, 1171–1194 (2011)MathSciNetMATHGoogle Scholar
  4. 4.
    Brans, J., Vincke, P., Marechal, B.: How to select and how to rank projects: The PROMOTEE method. European Journal of Operational Research 24, 228–238 (1986)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ennaceur, A., Elouedi, Z., Lefevre, E.: Handling partial preferences in the belief AHP method: Application to life cycle assessment. In: Pirrone, R., Sorbello, F. (eds.) AI*IA 2011. LNCS (LNAI), vol. 6934, pp. 395–400. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Ennaceur, A., Elouedi, Z., Lefevre, E.: Introducing incomparability in modeling qualitative belief functions. In: Torra, V., Narukawa, Y., López, B., Villaret, M. (eds.) MDAI 2012. LNCS, vol. 7647, pp. 382–393. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Ennaceur, A., Elouedi, Z., Lefevre, E.: Reasoning under uncertainty in the AHP method using the belief function theory. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012, Part IV. CCIS, vol. 300, pp. 373–382. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Keeney, R., Raiffa, H.: Decisions with multiple objectives: Preferences and value tradeoffs. Cambridge University Press (1976)Google Scholar
  9. 9.
    Laarhoven, P.V., Pedrycz, W.: A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems 11, 199–227 (1983)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pal, N., Bezdek, J., Hemasinha, R.: Uncertainty measures for evidential reasoning I: A review. International Journal of Approximate Reasoning 7, 165–183 (1992)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Saaty, T.: The Analytic Hierarchy Process. McGraw-Hill, New-York (1980)MATHGoogle Scholar
  12. 12.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)Google Scholar
  13. 13.
    Smets, P.: The combination of evidence in the Transferable Belief Model. IEEE Pattern Analysis and Machine Intelligence, 447–458 (1990)Google Scholar
  14. 14.
    Smets, P.: The application of the Transferable Belief Model to diagnostic problems. International Journal of Intelligent Systems 13, 127–158 (1998)CrossRefMATHGoogle Scholar
  15. 15.
    Wong, S., Lingras, P.: Representation of qualitative user preference by quantitative belief functions. IEEE Transactions on Knowledge and Data Engineering 6, 72–78 (1994)CrossRefGoogle Scholar
  16. 16.
    Zeleny, M.: Multiple Criteria Decision Making. McGraw-Hill Book Company (1982)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Amel Ennaceur
    • 1
  • Zied Elouedi
    • 1
  • Eric Lefevre
    • 2
  1. 1.LARODECUniversity of Tunis, Institut Supérieur de GestionTunisia
  2. 2.LGI2AUniv. Lille Nord of FranceUArtoisFrance

Personalised recommendations