Automated Reasoning in Metabolic Networks with Inhibition

  • Robert Demolombe
  • Luis Fariñas del Cerro
  • Naji Obeid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8249)


The use of artificial intelligence to represent and reason about metabolic networks has been widely investigated due to the complexity of their imbrication. Its main goal is to determine the catalytic role of genomes and their interference in the process. This paper presents a logical model for metabolic pathways capable of describing both positive and negative reactions (activations and inhibitions) based on a fragment of first order logic. We also present a translation procedure that aims to transform first order formulas into quantifier free formulas, creating an efficient automated deduction method allowing us to predict results by deduction and infer reactions and proteins states by abductive reasoning.


Metabolic pathways logical model inhibition automated reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments of predicate logic. Journal of Philosophical Logic 27(3), 217–274 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chetcuti-Sperandio, N., Fariñas del Cerro, L.: A mixed decision method for duration calculus. J. Log. Comput. 10(6), 877–895 (2000)CrossRefGoogle Scholar
  3. 3.
    Demolombe, R., Fariñas del Cerro, L.: An Inference Rule for Hypothesis Generation. In: Proc. of International Joint Conference on Artificial Intelligence, Sydney (1991)Google Scholar
  4. 4.
    Demolombe, R.: Syntactical characterization of a subset of domain-independent formulas. J. ACM 39(1), 71–94 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Demolombe, R., Fariñas del Cerro, L.: Information about a given entity: From semantics towards automated deduction. J. Log. Comput. 20(6), 1231–1250 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Erwig, M., Walkingshaw, E.: Causal reasoning with neuron diagrams. In: Proceedings of the 2010 IEEE Symposium on Visual Languages and Human-Centric Computing, VLHCC 2010, pp. 101–108. IEEE Computer Society, Washington, DC (2010)CrossRefGoogle Scholar
  7. 7.
    Glorian, V., Maillot, G., Poles, S., Iacovoni, J.S., Favre, G., Vagner, S.: Hur-dependent loading of mirna risc to the mrna encoding the ras-related small gtpase rhob controls its translation during uv-induced apoptosis. Cell Death Differ 18(11), 1692–1701 (2011)CrossRefGoogle Scholar
  8. 8.
    Inoue, K.: Linear resolution for consequence finding. Artificial Intelligence 56(2-3), 301–353 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Inoue, K., Doncescu, A., Nabeshima, H.: Hypothesizing about causal networks with positive and negative effects by meta-level abduction. In: Frasconi, P., Lisi, F.A. (eds.) ILP 2010. LNCS, vol. 6489, pp. 114–129. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Inoue, K., Doncescu, A., Nabeshima, H.: Completing causal networks by meta-level abduction. Machine Learning 91(2), 239–277 (2013)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kohn, K.W., Pommier, Y.: Molecular interaction map of the p53 and mdm2 logic elements, which control the off-on swith of p53 response to dna damage. Biochem. Biophys. Res. Commun. 331(3), 816–827 (2005)CrossRefGoogle Scholar
  12. 12.
    Muggleton, S., Bryant, C.H.: Theory completion using inverse entailment. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 130–146. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Nabeshima, H., Iwanuma, K., Inoue, K., Ray, O.: Solar: An automated deduction system for consequence finding. AI Commun. 23(2-3), 183–203 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Pommier, Y., Sordet, O., Rao, V.A., Zhang, H., Kohn, K.W.: Targeting chk2 kinase: molecular interaction maps and therapeutic rationale. Curr. Pharm. Des. 11(22), 2855–2872 (2005)CrossRefGoogle Scholar
  15. 15.
    Ray, O.: Automated abduction in scientific discovery. In: Magnani, L., Li, P. (eds.) Model-Based Reasoning in Science and Medicine. SCI, vol. 64, pp. 103–116. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Ray, O., Whelan, K., King, R.: Logic-based steady-state analysis and revision of metabolic networks with inhibition. In: Proceedings of the 2010 International Conference on Complex, Intelligent and Software Intensive Systems, CISIS 2010, pp. 661–666. IEEE Computer Society, Washington, DC (2010)CrossRefGoogle Scholar
  17. 17.
    Reiser, P.G.K., King, R.D., Kell, D.B., Muggleton, S.H., Bryant, C.H., Oliver, S.G.: Developing a logical model of yeast metabolism. Electronic Transactions in Artificial Intelligence 5, 233–244 (2001)Google Scholar
  18. 18.
    Reiter, R.: On closed world data bases. In: Readings in Nonmonotonic Reasoning, pp. 300–310. Morgan Kaufmann Publishers Inc., San Francisco (1987)Google Scholar
  19. 19.
    Shoenfield, J.R.: Mathematical logic. Addison-Wesley series in logic. Addison-Wesley Pub. Co. (1967)Google Scholar
  20. 20.
    Siegel, P.: Representation et utilisation de la connaissance en calcul propositionnel. Thèse d’État, Université d’Aix-Marseille II, Luminy, France (1987)Google Scholar
  21. 21.
    Tamaddoni-Nezhad, A., Kakas, A.C., Muggleton, S., Pazos, F.: Modelling inhibition in metabolic pathways through abduction and induction. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 305–322. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Ullman, J.D.: Principles of database systems. Computer software engineering series. Computer Science Press (1980)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Robert Demolombe
    • 1
  • Luis Fariñas del Cerro
    • 1
  • Naji Obeid
    • 1
  1. 1.IRITUniversité de Toulouse and CNRSToulouseFrance

Personalised recommendations