The Construction of the Relative Distance Fuzzy Values Based on the Questionnaire Experiment

  • Jedrzej Osiński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8249)


The spatio-temporal reasoning is an import field of artificial intelligence. However the qualitative distance (like near or far) which can be the result of a natural language processing is almost impossible to interpret due to its relative character (connected with a specific language competences of an interlocutor, the context of usage and the perspective of observation). That is why we present a technique for the construction of the fuzzy values associated with such expressions which is based on the questionnaire experiment performed via Internet. We also show how the final linguistic variables can simple became arguments for complex calculations. The presented solution can be treat as a general method applicable in many areas.


fuzzy relations linguistic variables natural language processing spatio-temporal reasoning CDC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Freksa, C.: Qualitative Spatial Reasoning. In: Frank, D.M., Frank, A.U. (eds.) Cognitive and Linguistics Aspects of Geographic Space. NATO ASI Series, pp. 361–372 (1991)Google Scholar
  2. 2.
    Goyal, R.K., Egenhofer, M.J.: Cardinal directions between extended spatial objects. IEEE Transactions on Knowledge and Data Engineering (2001)Google Scholar
  3. 3.
    Hernández, D.: Qualitative Representation of Spatial Knowledge. LNCS, vol. 804. Springer, Heidelberg (1994)CrossRefzbMATHGoogle Scholar
  4. 4.
    Papageorgiou, E.I., Papandrianos, N., Karagianni, G., Kyriazopoulos, G., Sfyras, D.: Fuzzy Cognitive Map Based Approach for Assessing Pulmonary Infections. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 109–118. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Retz-Schmidt, G.: Various Views on Spatial Prepositions. In: Engelmore, R. (ed.) AI Magazine, vol. 9(2), pp. 95–105. AAAI Press, Menlo Park (1988)Google Scholar
  6. 6.
    Skiadopoulos, S., Koubarakis, M.: Composing cardinal direction relations. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 299–317. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Vetulani, Z., Marciniak, J., Obrebski, T., Kubis, M., Osinski, J., Walkowska, J., Kubacki, P., Witalewski, K.: POLINT-112-SMS: Beta Prototype. In: Vetulani, Z. (ed.) Proceedings of the 4th Language & Technology Conference, November 6-8, pp. 160–164. Wyd. Poznanskie, Poznan (2009)Google Scholar
  8. 8.
    Vetulani, Z., Marciniak, J., Obrebski, T., Vetulani, G., Dabrowski, A., Kubis, M., Osinski, J., Walkowska, J., Kubacki, P., Witalewski, K.: Zasoby jezykowe i technologie przetwarzania tekstu. POLINT-112-SMS jako przyklad aplikacji z zakresu bezpieczenstwa publicznego (Language resources and text processing Technologies. POLINT-112-SMS as example of public security application with language competence). Wyd. UAM, Poznan (2010) (in Polish)Google Scholar
  9. 9.
    Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning - I. Information Sciences 8(3), 199–249 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mohamad Zain, N., Narayana Samy, G., Ahmad, R., Ismail, Z., Abdul Manaf, A.: Fuzzy Based Threat Analysis in Total Hospital Information System. In: Kim, T.-H., Adeli, H. (eds.) AST/UCMA/ISA/ACN 2010. LNCS, vol. 6059, pp. 1–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Jedrzej Osiński
    • 1
  1. 1.Faculty of Mathematics and Computer ScienceAdam Mickiewicz UniversityPoznanPoland

Personalised recommendations