A Virtual Player for “Who Wants to Be a Millionaire?” based on Question Answering

  • Piero Molino
  • Pierpaolo Basile
  • Ciro Santoro
  • Pasquale Lops
  • Marco de Gemmis
  • Giovanni Semeraro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8249)


This work presents a virtual player for the quiz game “Who Wants to Be a Millionaire?”. The virtual player demands linguistic and common sense knowledge and adopts state-of-the-art Natural Language Processing and Question Answering technologies to answer the questions. Wikipedia articles and DBpedia triples are used as knowledge sources and the answers are ranked according to several lexical, syntactic and semantic criteria. Preliminary experiments carried out on the Italian version of the boardgame proves that the virtual player is able to challenge human players.


Latent Semantic Analysis Question Answering Linguistic Feature Language Game Game Manager 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, A., Raghavan, H., Subbian, K., Melville, P., Lawrence, R.D., Gondek, D., Fan, J.: Learning to rank for robust question answering. In: CIKM, pp. 833–842 (2012)Google Scholar
  2. 2.
    Burges, C.J.C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.N.: Learning to rank using gradient descent. In: ICML, pp. 89–96 (2005)Google Scholar
  3. 3.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  4. 4.
    Ernandes, M., Angelini, G., Gori, M.: Webcrow: A web-based system for crossword solving. In: Veloso, M.M., Kambhampati, S. (eds.) AAAI, pp. 1412–1417. AAAI Press/The MIT Press (2005)Google Scholar
  5. 5.
    Ferrucci, D.A., Brown, E.W., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A., Lally, A., Murdock, J.W., Nyberg, E., Prager, J.M., Schlaefer, N., Welty, C.A.: Building Watson: An Overview of the DeepQA Project. AI Magazine 31(3), 59–79 (2010)Google Scholar
  6. 6.
    Freund, Y., Iyer, R.D., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research 4, 933–969 (2003)MathSciNetGoogle Scholar
  7. 7.
    Kanerva, P.: Sparse Distributed Memory. MIT Press (1988)Google Scholar
  8. 8.
    Lam, S.K., Pennock, D.M., Cosley, D., Lawrence, S.: 1 billion pages = 1 million dollars? mining the web to play “who wants to be a millionaire?”. In: Meek, C., Kjærulff, U. (eds.) UAI, pp. 337–345. Morgan Kaufmann (2003)Google Scholar
  9. 9.
    Molino, P., Basile, P.: Questioncube: a framework for question answering. In: Amati, G., Carpineto, C., Semeraro, G. (eds.) Proceedings of the 3rd Italian Information Retrieval (IIR) Workshop, Bari, Italy, January 26-27. CEUR Workshop Proceedings, vol. 835, pp. 167–178. CEUR-WS.org (2012)Google Scholar
  10. 10.
    Molino, P., Basile, P., Caputo, A., Lops, P., Semeraro, G.: Exploiting distributional semantic models in question answering. In: Sixth IEEE International Conference on Semantic Computing, ICSC 2012, Palermo, Italy, September 19-21, pp. 146–153. IEEE Computer Society (2012)Google Scholar
  11. 11.
    Monz, C.: Minimal span weighting retrieval for question answering. In: Gaizauskas, R., Greenwood, M., Hepple, M. (eds.) Proceedings of the SIGIR Workshop on Information Retrieval for Question Answering, pp. 23–30 (2004)Google Scholar
  12. 12.
    Penas, A., Forner, P., Rodrigo, A., Sutcliffe, R.F.E., Forascu, C., Mota, C.: Overview of ResPubliQA 2010: Question Answering Evaluation over European Legislation. In: Braschler, M., Harman, D., Pianta, E. (eds.) Working Notes of ResPubliQA 2010 Lab at CLEF 2010 (2010)Google Scholar
  13. 13.
    Robertson, S., Zaragoza, H.: The probabilistic relevance framework: Bm25 and beyond. Found. Trends Inf. Retr. 3, 333–389 (2009)CrossRefGoogle Scholar
  14. 14.
    Sellberg, L., Jönsson, A.: Using random indexing to improve singular value decomposition for latent semantic analysis. In: LREC (2008)Google Scholar
  15. 15.
    Semeraro, G., de Gemmis, M., Lops, P., Basile, P.: An artificial player for a language game. IEEE Intelligent Systems 27(5), 36–43 (2012)CrossRefGoogle Scholar
  16. 16.
    Shaw, J.A., Fox, E.A.: Combination of multiple searches. In: The Second Text REtrieval Conference (TREC-2), pp. 243–252 (1994)Google Scholar
  17. 17.
    Wu, Q., Burges, C.J.C., Svore, K.M., Gao, J.: Adapting boosting for information retrieval measures. Inf. Retr. 13(3), 254–270 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Piero Molino
    • 1
  • Pierpaolo Basile
    • 1
  • Ciro Santoro
    • 1
  • Pasquale Lops
    • 1
  • Marco de Gemmis
    • 1
  • Giovanni Semeraro
    • 1
  1. 1.Dept. of Computer ScienceUniversity of Bari Aldo MoroBariItaly

Personalised recommendations