Spatial Effects: Transport on Interdependent Networks

  • Richard G. Morris
  • Marc BarthelemyEmail author
Part of the Understanding Complex Systems book series (UCS)


Space plays an important role in the behaviour of both individual infrastructures, and the interdependencies between them. In this Chapter, we first review spatial effects, their relevance in the study of networks, and their characterization. The impact of spatial embedding in interdependent networks is then described in detail via the important example of efficient transport (or routing) with multiple sources and sinks. In this case, there is an optimal interdependence which relies on a subtle interplay between spatial structure and patterns of traffic flow. Although simplified, this type of model highlights emergent behaviour and brings new understanding to the study of coupled spatial infrastructures.


Road Network Gini Coefficient Betweenness Centrality Delaunay Triangulation Information Communication Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank financial support from CEA-DRT for the project STARC. MB was supported by the FET-Proactive project PLEXMATH (FP7-ICT-2011-8; grant number 317614) funded by the European Commission.


  1. 1.
    S. M. Rinaldi, J. P. Peerenboom, T. K. Kelly. Critical infrastructure interdependencies, IEEE Control. Syst. Magn. 21,11 (2001).Google Scholar
  2. 2.
    D. Asprone, M. Cavallaro, V. Latora, G. Manfredi, V. Nicosia (2013).Google Scholar
  3. 3.
    R. H. Samet, Futures 47 49–58 (2013).Google Scholar
  4. 4.
    C. Barrett, K. Channakeshava, F. Huang, J. Kim, A. Marathe, M. V. Marathe, G. Pei, S. Saha, B. S. P. Subbiah, A. K. S. Vullikanti, PLoS One 7, e45406 (2012).Google Scholar
  5. 5.
    M. Barthelemy, Phys. Rep. 499, 1 (2011).Google Scholar
  6. 6.
    D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan, A. Tomkins, Proc. Natl. Acad. Sci. (USA) 102, 11623–11628 (2005).Google Scholar
  7. 7.
    L. Guibas and J. Stolfi, ACM T. Graphic. 4, 74 (1985).Google Scholar
  8. 8.
    W. L. Garrison, Regional Science 6, 121–137 (1960).Google Scholar
  9. 9.
    K. Kansky, Structure of transportation networks: relationships between network geometry and regional characteristics (University of Chicago Press, Chicago, 1969).Google Scholar
  10. 10.
    P. Haggett and R. J. Chorley, Network analysis in geography (Edward Arnold, London, 1969).Google Scholar
  11. 11.
    E. J. Taaffe and H. L. Gauthier Jr., Geography of transportation, (Prenctice Hall, Englewood Cliffs, NJ, 1973).Google Scholar
  12. 12.
    J.-P. Rodrigue and C. Comtois and B. Slack, The geography of transport systems, (Routledge, New York, NY, 2006).Google Scholar
  13. 13.
    F. Xie and D. Levinson, Geographical analysis, 39, 336–356 (2007).Google Scholar
  14. 14.
    E. Strano, V. Nicosia, V. Latora, S. Porta, M. Barthelemy, Nature Scientific Reports 2:296 (2012).Google Scholar
  15. 15.
    R. Parshani, S. Buldyrev, and S. Havlin, Phys. Rev. Lett. 105, (2010).Google Scholar
  16. 16.
    S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, Nature (London) 464, 1025 (2010).Google Scholar
  17. 17.
    X. Huang, J. Gao, S. V. Buldyrev, S. Havlin, and H. E. Stanley, Phys. Rev. E 83, 065101(R) (2011).Google Scholar
  18. 18.
    C.-G. Gu, S.-R. Zou, X.-L. Xu, Y.-Q. Qu, Y.-M. Jiang, D. R. He, H.-K. Liu, and T. Zhou, Phys. Rev. E 84, 026101 (2011).Google Scholar
  19. 19.
    J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, Nature Phys. 8, 40 (2011).Google Scholar
  20. 20.
    C. D. Brummitt, R. M. D’Souza, and E. A. Leicht, Proc. Natl. Acad. Sci. USA 109(12) (2012).Google Scholar
  21. 21.
    A. Saumell-Mendiola, M. A. Serrano, M. Boguna, arXiv:1202.4087, (2012).Google Scholar
  22. 22.
    S. Carmi, Z. Wu, S. Havlin, and H. E. Stanley, Europhys. Lett. 84, 28005 (2008).Google Scholar
  23. 23.
    W. Li, A. Bashan, S. V. Buldyrev, H. E. Stanley, and S. Havlin, Phys. Rev. Lett. 108, 228702 (2012).Google Scholar
  24. 24.
    A. Bashan, Y. Berezin, S. V. Buldyrev, and S. Havlin, arXiv:1206.2062, (2012).Google Scholar
  25. 25.
    A. Bunde and S. Havlin, Fractals and Disordered Systems (Springer, New York, 1991).Google Scholar
  26. 26.
    R. G. Morris and M. Barthelemy, Phys. Rev. Lett. 109, 128703 (2012).Google Scholar
  27. 27.
    A. Reynolds-Feighan, J. Air Transp. Manag. 7, 265 (2001).Google Scholar
  28. 28.
    P. M. Dixon, J. Weiner, T. Mitchell-Olds, and R. Woodley, Ecology 68, 1548 (1987).Google Scholar
  29. 29.
    I. Lampropoulos, G. M. A Vanalme, W. L Kling, ISGT Europe 2010 IEEE PES (IEEE, New York, 2010).Google Scholar
  30. 30.
    R. G. Morris and M. Barthelemy. Sci. Rep. 3, 2764 (2013).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.The University of WarwickCoventryUK
  2. 2.CEA-IPhTParisFrance

Personalised recommendations