Federated Modelling and Simulation for Critical Infrastructure Protection

  • Erich RomeEmail author
  • Peter Langeslag
  • Andrij Usov
Part of the Understanding Complex Systems book series (UCS)


Modelling and simulation is an important tool for Critical Infrastructure (CI) dependency analysis, for testing methods for risk reduction, and as well for the evaluation of past failures. Moreover, interaction of such simulations with external threat models, e.g., a river flood model, or economic models enable consequence analysis and thus may assist in what-if decision-making processes. The simulation of complex scenarios involving several different CI sectors requires the usage of heterogeneous federated simulations of CIs. However, common standards for modelling and interoperability of such federated CI simulations are missing. Also, creating the required abstract models from CIs and other data, setting up the individual federate simulators and integrating all subsystems is a time-consuming and complicated task that requires substantial know-how and resources. In this chapter, we outline applications and benefit of federated modelling, simulation and analysis (MS&A) for Critical Infrastructure Protection (CIP). We review the state of the art in federated MS&A for CIP and categorise common approaches and interoperability concepts like central and lateral coupling of simulators. As examples for the latter two concepts, we will present in more detail an interoperability standard from the military domain, HLA, and an approach developed in the DIESIS project. Special emphasis will also be put on describing the problem of synchronising systems with different time models. Also, we will briefly assess the state of transferring MS&A for CIP research results to practical application by comparing the situations in the USA and in Europe.


Federated simulation Modelling Analysis Interoperability Critical infrastructures HAL DIESIS OpenMI XMSF IDSim I2Sim Simulation Time synchronisation 



We would like to thank all our colleagues and project partners who collaborated with us over the last 7 years in several projects related to CIP. Our special thanks go to: Eric Luiijf, Marieke Klaver, Albert Nieuwenhuis, Patrick Hanckmann, Jeroen Voogd (TNO); Césaire Beyel, Uwe Beyer, Rüdiger Klein (Fraunhofer IAIS); Alberto Tofani, Vittorio Rosato, Paolo Palazzari, Elisa Castorini, Claudio Balducelli (ENEA); Paolo Servillo, Vincenzo Masucci (formerly CRIAI); Gökce Görbil, Erol Gelenbe, Ricardo Lent (Imperial College); and Sandro Bologna (AIIC). We also gratefully acknowledge that some of our own work cited here (IRRIIS, DIESIS) has been co-funded by the EU.


  1. 1.
    Luiijf, H., Klaver, M.: International interdependency of C(I)IP in Europe (Internationale Verflechtung von C(I)IP in Europa). In: Proc. CIP Europe 2005—Critical Infrastructure Protection, GI CIS Forum, Bonn, Germany. (2005)Google Scholar
  2. 2.
    EC: Council Directive 2008/114/EC of 8 December 2008 on the identification and designation of European critical infrastructures and the assessment of the need to improve their protection. OJEU, European Commission (2008)Google Scholar
  3. 3.
    Nieuwenhuijs, A., Luiijf, H., Klaver, M.: Modeling critical infrastructure dependencies. In Mauricio, P., Shenoi, S., eds.: Critical Infrastructure Protection II. Volume 290 of IFIP., Boston, MA, USA, Springer (2008) 205–214Google Scholar
  4. 4.
    Setola, R., Bologna, S., Casalicchio, E., Masucci, V.: An integrated approach for simulating interdependencies. In Papa, M., Shenoi, S., eds.: Critical Infrastructure Protection II. Volume 290 of The International Federation for Information Processing. Springer US (2009) 229–239Google Scholar
  5. 5.
    Luiijf, H., Nieuwenhuijs, A.H., Klaver, M.H., Eeten, M.J.V., Cruz, E.: Empirical findings on European critical infrastructure dependencies. Int. J. of System of, Systems Engineering 2(1), (2010) 3–18Google Scholar
  6. 6.
    Pederson, P., Dudenhoeffer, D., Hartley, S., Permann, M.: Critical infrastructure interdependency modeling: A survey of U.S. and international research. Technical Report INL/EXT-06-11464, Idaho National Laboratory (August 2006)Google Scholar
  7. 7.
    Dudenhoeffer, D., Permann, M., Manic, M.: Cims: A framework for infrastructure interdependency modeling and analysis. In: Simulation Conference, 2006. WSC 06. Proc. Winter. (Dec. 2006) 478–485Google Scholar
  8. 8.
    Min, H., Beyeler, W., Brown, T., Son, Y., Jones, A.: Toward modeling and simulation of critical national infrastructure interdependencies. IIE Transactions 39(1) (2007) 57–71Google Scholar
  9. 9.
    Laprie, J.C., Kanoun, K., Kaâniche, M.: Modelling interdependencies between the electricity and information infrastructures. In Saglietti, F., Oster, N., eds.: SAFECOMP 2007. Volume 4680 of LNCS. Springer, Berlin Heidelberg (2007) 54–67Google Scholar
  10. 10.
    Casalicchio, E., Galli, E., Tucci, S.: Federated agent-based modeling and simulation approach to study interdependencies in IT Critical Infrastructures. In: Distributed Simulation and Real-Time Applications, 2007. DS-RT 2007. 11th IEEE International, Symposium. (Oct. 2007) 182–189Google Scholar
  11. 11.
    Svendsen, N.K., Wolthusen, S.D.: Connectivity models of interdependency in mixed-type critical infrastructure networks. Inf. Secur. Tech. Rep. 12(1) (March 2007) 44–55Google Scholar
  12. 12.
    Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S.D., Setola, R.: Modelling interdependent infrastructures using interacting dynamical models. Int. J. of Critical Infrastructures 4(1/2) (2008) 63–79Google Scholar
  13. 13.
    Rinaldi, S., Peerenboom, J., Kelly, T.: Identifying, Understanding, and Analyzing Critical Infrastructure Interdependencies. IEEE Control System Magazine December (2001) 11–25Google Scholar
  14. 14.
    Rinaldi, S.M.: Modeling and simulating critical infrastructures and their interdependencies. In: Proc. 37th Annual Hawaii Int. Conf. System Sciences (HICSS’04)—Volume 2, Washington, DC, USA, IEEE Computer Society (2004) 20054.1Google Scholar
  15. 15.
    Tolone, W.J., Wilson, D., Raja, A., Xiang, W.N., Hao, H., Phelps, S., Johnson, E.W.: Critical infrastructure integration modeling and simulation. In Chen, H., Moore, R., Zeng, E., Leavitt, J., eds.: Proc. 2nd Symposium on Intelligence and Security Informatics (ISI-2004). Volume 3073 of LNCS., Springer-Verlag (2004) 214–225Google Scholar
  16. 16.
    Rome, E., Bologna, S., Gelenbe, E., Luiijf, E., Masucci, V.: DIESIS—design of an interoperable European federated simulation network for critical infrastructures. In: Proceedings of the 2009 SISO European Simulation Interoperability Workshop (EURO SIW ’09), San Diego, CA, USA, Simulation Councils, Inc. (2009) 139–146Google Scholar
  17. 17.
    Bloomfield, R., Chozos, N., Nobles, P.: Infrastructure interdependency analysis: Requirements, capabilities and strategy. Technical Report D/418/12101/3, Adelard LLP, London, UK (2009)Google Scholar
  18. 18.
    Luiijf, H., Klaver, M.: Critical infrastructure awareness required by civil emergency planning. In: Proc. 1st IEEE International Workshop on Critical Infrastructure Protection (IWCIP ’05), Washington, DC, USA, IEEE Computer Society (2005) 110–118Google Scholar
  19. 19.
    Martí, J., Ventura, C., Hollman, J., Srivastava, K., Juárez, H.: I2Sim Modelling and Simulation Framework for Scenario Development, Training, and Real-Time Decision Support of Multiple Interdependent Critical Infrastructures during Large Emergencies. In: How is Modelling and Simulation Meeting the Defence Challenges out to 2015? Volume RTO-MP-MSG-060., NATO RTO Modelling and Simulation Group Conf., Vancouver, BC, Canada (October 2008) 16.1–16.14Google Scholar
  20. 20.
    Klein, R., Rome, E., Beyel, C., Linnemann, R., Reinhardt, W., Usov, A.: Information modelling and simulation in large interdependent critical infrastructures. In Setola, R.E.e.a., ed.: Proc. 3rd International Workshop on Critical Information Infrastructures Security (CRITIS ’08). Volume 5508 of LNAI., Berlin, Springer-Verlag (2009) 36–47Google Scholar
  21. 21.
    Usov, A., Beyel, C.: Simulating interdependent critical infrastructures with SimCIP. European CIIP Newsletter 4(3) (November/December 2008) 6–8Google Scholar
  22. 22.
    Balducelli, C., Pietro, A.D., Lavalle, L., Vicoli, G.: A middleware improved technology (MIT) to mitigate interdependencies between critical infrastructures. In de Lemos, R., Giandomenico, F., Gacek, C., Muccini, H., Vieira, M., eds.: Architecting Dependable Systems V. Volume 5135 of LNCS. Springer, Berlin / Heidelberg (2008)Google Scholar
  23. 23.
    Tofani, A., Castorini, E., Palazzari, P., Usov, A., Beyel, C., Rome, E., Servillo, P.: Using ontologies for the federated simulation of critical infrastructures. Procedia Computer Science 1(1) (2010) 2301–2309Google Scholar
  24. 24.
    Usov, A., Beyel, C., Rome, E., Beyer, U., Castorini, E., Palazzari, P., Tofani, A.: The DIESIS approach to semantically interoperable federated critical infrastructure simulation. In: Advances in System Simulation (SIMUL), 2010 Second International Conference on. (August 2010) 121–128Google Scholar
  25. 25.
    Adinolfi, F., Monica, M.D., Masucci, V., Olivadoti, S., Servillo, P., Spizuocol, C., et al.: DIESIS Deliverable D2.2: Final technology analysis and assessment. Technical report, CRIAI (2009)Google Scholar
  26. 26.
    IEEE: IEEE 1516–2000: High level architecture (2000)Google Scholar
  27. 27.
    IEEE: IEEE standard for modeling and simulation (M &S) high level architecture (HLA)—framework and rules. Technical report, IEEE (2000)Google Scholar
  28. 28.
    IEEE: IEEE 1516–2000: High level architecture—framework and rules (2000)Google Scholar
  29. 29.
    IEEE: IEEE 1516–2000: High level architecture—federate interface specification (2000)Google Scholar
  30. 30.
    Gregersen, J.B., Gijsbers, P.J.A., Westen, S.J.P.: OpenMI: Open modelling interface. J. of Hydroinformatics 9(3) (2007) 175–191Google Scholar
  31. 31.
    OpenMI Association: last accessed 2013-01-16
  32. 32.
    Fujimoto, R.M.: Parallel simulation: parallel and distributed simulation systems. In: Proceedings of the 33nd conference on Winter simulation. WSC ’01, Washington, DC, USA, IEEE Computer Society (2001) 147–157Google Scholar
  33. 33.
    Chandy, K., Misra, J.: Distributed simulation: A case study in design and verification of distributed programs. Software Engineering, IEEE Transactions on SE-5(5) (sept. 1979) 440–452Google Scholar
  34. 34.
    Riley, G.F., Ammar, M.H., Fujimoto, R.M., Park, A., Perumalla, K., Xu, D.: A federated approach to distributed network simulation. ACM Trans. Modeling and Computer Simulation 14(2) (April 2004) 116–148Google Scholar
  35. 35.
    Mattern, F.: Efficient algorithms for distributed snapshots and global virtual time approximation. Journal of Parallel and Distributed Computing 18(4) (1993)Google Scholar
  36. 36.
    Fujimoto, R., McLean, T., Perumalla, K., Tacic, I.: Design of high performance rti software. In: Distributed Simulation and Real-Time Applications, 2000. (DS-RT 2000). Proceedings. Fourth IEEE International Workshop on, IEEE (2000) 89–96Google Scholar
  37. 37.
    Jefferson, D.R.: Virtual time. ACM Trans. Program. Lang. Syst. 7(3) (July 1985) 404–425Google Scholar
  38. 38.
    Sokol, L.M., Stucky, B.K.: MTW: Experimental results for a constrained optimistic scheduling paradigm. In Nicol, D., ed.: Distributed Simulation. Volume 22 of Simulation. Society for Computer Simulation (SCS), San Diego, CA (January 1990) 169–173Google Scholar
  39. 39.
    Steinman, J.S.: Breathing time warp. In: Proceedings of the seventh workshop on Parallel and distributed simulation. PADS ’93, New York, NY, USA, ACM (1993) 109–118Google Scholar
  40. 40.
    Dickens, P., Reynolds, P.: SRADS with local rollback. Institute for Parallel Computation, School of Engineering and Applied Science, University of Virginia (1990)Google Scholar
  41. 41.
    IEEE: IEEE 1278–1993—standard for distributed interactive simulation (1993)Google Scholar
  42. 42.
    HLA-OMT: High-level architecture object model template specification version 1.3 (5 February 1998)Google Scholar
  43. 43.
    Masucci, V., Adinolfi, F., Servillo, P., Dipoppa, G., Tofani, A.: Ontology-based critical infrastructure modeling and simulation. In Palmer, C., Shenoi, S., eds.: Critical Infrastructure Protection III. Volume 311 of IFIP Advances in Information and Communication Technology. Springer, Berlin Heidelberg (2009) 229–242Google Scholar
  44. 44.
    SISO: SISO generic methodology for verification and validation (GM-VV) to support acceptance of models, simulations and data (2012)Google Scholar
  45. 45.
    Bagheri, E., Ghorbani, A.A.: The state of the art in critical infrastructure protection: a framework for convergence. Int. J. of Critical Infrastructures 4(3) (2008) 215–244Google Scholar
  46. 46.
    Hopkinson, K., Wang, X., Giovanini, R., Thorp, J., Birman, K., Coury, D.: EPOCHS: A platform for agent-based electric power and communication simulation built from commercial off-the-shelf components. IEEE Trans. on Power Systems 21(2) (May 2006) 548–559Google Scholar
  47. 47.
    NS2: The Network Simulator: last accessed 2013-01-16
  48. 48.
    Bagheri, E., Ghorbani, A.A.: A service oriented approach to critical infrastructure modeling. In: Workshop on Service Oriented Techniques, NRC-Canada (2006)Google Scholar
  49. 49.
    Bagheri, E., Baghi, H., Ghorbani, A.A., Yari, A.: An agent-based service-oriented simulation suite for critical infrastructure behavior analysis. Int. J. of Business Process Integration and Management 2(4) (2007) 312–326Google Scholar
  50. 50.
    Rahman, H., Armstrong, M., Mao, D., Marti, J.: I2sim: A matrix-partition based framework for critical infrastructure interdependencies simulation. In: Electric Power Conference, 2008. EPEC 2008. IEEE Canada, IEEE (Oct. 2008) 1–8Google Scholar
  51. 51.
    Tolone, W., Lee, S.W., Xiang, W.N., Blackwell, J., Yeager, C., Schumpert, A., Johnson, W.: An integrated methodology for critical infrastructure modeling and simulation. In Papa, M., Shenoi, S., eds.: Critical Infrastructure Protection II. Volume 290 of The International Federation for Information Processing. Springer US (2009) 257–268Google Scholar
  52. 52.
    Tolone, W.J., Johnson, E.W., Lee, S.W., Xiang, W.N., Marsh, L., Yeager, C., Blackwell, J.: Enabling system of systems analysis of critical infrastructure behaviors. In Setola, R., Geretshuber, S., eds.: Critical Information Infrastructure Security. Springer-Verlag, Berlin, Heidelberg (2009) 24–35Google Scholar
  53. 53.
    Betrie, G., van Griensven, A., Mohamed, Y., Popescu, I., Mynett, A., Hummel, S.: Linking SWAT and SOBEK using open modeling interface (OpenMI) for sediment transport simulation in the blue nile river basin. Trans. of the ASABE 54(5) (2011) 1749–1757Google Scholar
  54. 54.
    Fitzgibbons, J.B., Fujimoto, R.M., Fellig, D., Kleban, S.D., Scholand, A.J.: IDSim: An extensible framework for interoperable distributed simulation. In: IEEE International Conference on Web Services 2004 (ICWS’04), IEEE (2004) 532–539Google Scholar
  55. 55.
    Brutzman, D., Zyda, M., Pullen, J.M., Morse, K.L.: Extensible modeling and simulation framework (XMSF) challenges for web-based modeling & simulation. Findings and recommendations report: Technical challenges workshop, strategic opportunities symposium, MOVES Institute, Monterey, CA, USA (Oct. 22 2002)Google Scholar
  56. 56.
    Pullen, J.M., Brunton, R., Brutzman, D., Drake, D., Hieb, M., Morse, K.L., Tolk, A.: Using web services to integrate heterogeneous simulations in a grid environment. Future Generation Computer Systems 21(1) (2005) 97–106Google Scholar
  57. 57.
    NISAC, National Infrastructure Simulation and Analysis Center, USA: Last accessed 2013-01-16
  58. 58.
    Linebarger, J.M., Fellig, D., Moore, P.D., Goldsby, M., Hawley, M.F., Sa, T.J.: Integrating software architectures for distributed simulations and simulation analysis communities. Technical Report SAND 2005–6642, Sandia National Laboratory (2005)Google Scholar
  59. 59.
    Morse, K., Brunton, R., Pullen, J., McAndrews, P., Tolk, A., Muguira, J.: An architecture for web-services based interest management in real time distributed simulation. In: Distributed Simulation and Real-Time Applications, 2004. DS-RT 2004. Eighth IEEE International Symposium on, IEEE (Oct. 2004) 108–115Google Scholar
  60. 60.
    Morse, K.L., Bic, L., Dillencourt, M.: Interest management in large-scale virtual environments. Presence: Teleoper. Virtual Environ. 9(1) (February 2000) 52–68Google Scholar
  61. 61.
    Sikora, A., Niewiadomska-Szynkiewicz, E.: A federated approach to parallel and distributed simulation of complex systems. Int. J. Appl. Math. Comput. Sci. 17(1) (March 2007) 99–106Google Scholar
  62. 62.
    Sikora, A., Niewiadomska-Szynkiewicz, E.: FR/ASimJava: a federated approach to parallel and distributed network simulation in practice. J. Telecommunications & Information Technology 2006(4) (2006) 53–59Google Scholar
  63. 63.
    Tofani, A., Castorini, E., Palazzari, P., Usov, A., Beyel, C., Rome, E., Servillo, P.: An ontological approach to simulate critical infrastructures. Journal of Computational Science 1(4) (2010) 221–228 Class-ABGoogle Scholar
  64. 64.
    Görbil, G., Gelenbe, E.: Design of a mobile agent-based adaptive communication middleware for federations of critical infrastructure simulations. In Rome, E., Bloomfield, R., eds.: Critical Information Infrastructures Security. Volume 6027 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg (2010) 34–49Google Scholar
  65. 65.
    Beyer, U., Usov, A., Rome, E., Beyel, C., et al.: DIESIS Deliverable D4.1b: Final architectural design. Technical report, Fraunhofer IAIS (2009)Google Scholar
  66. 66.
    Tofani, A., Usov, A., Castorini, E., Rome, E., Görbil, G., Palazzari, P., Servillo, P., Hanckmann, P., Beyer, U.: DIESIS Deliverable D4.2a: Proof of concept. Technical report, ENEA (2009)Google Scholar
  67. 67.
    Hämmerli, B., Renda, A.: Protecting Critical Infrastructure in the EU. Technical Report CEPS Task Force Report, Centre for European Policy Studies, Brussels (March 2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Fraunhofer IAISSankt AugustinGermany
  2. 2.TNO Defence, Security and SafetyThe HagueThe Netherlands

Personalised recommendations