Skip to main content

Asymptotic Behaviour of the Distribution Density of the Fractional Lévy Motion

  • Chapter
  • First Online:
Modern Stochastics and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 90))

  • 2432 Accesses

Abstract

We investigate the distribution properties of the fractional Lévy motion defined by the Mandelbrot-Van Ness representation:

$$\displaystyle{Z_{t}^{H}:=\int _{ \mathbb{R}}f(t,s)dZ_{s},}$$

where Z s , \(s \in \mathbb{R}\), is a (two-sided) real-valued Lévy process, and

$$\displaystyle{f(t,s):= \frac{1} {\varGamma (H + 1/2)}\left [(t - s)_{+}^{H-1/2} - (-s)_{ +}^{H-1/2}\right ],\quad t,s \in \mathbb{R}.}$$

We consider separately the cases 0 < H < 1∕2 (short memory) and 1∕2 < H < 1 (long memory), where H is the Hurst parameter, and present the asymptotic behaviour of the distribution density of the process. Some examples are provided, in which it is shown that the behaviour of the density in the cases 0 < H < 1∕2 and 1∕2 < H < 1 is completely different.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basse, A., Pedersen, J.: Lévy driven moving averages and semimartingales. Stochastic Processes Appl. 119, 2970–2991 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benassi, A., Cohen, S., Istas, J.: On roughness indices for fractional fields. Bernoulli 10(2), 357–373 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bender, C., Marquardt, T.: Integrating volatility clustering into exponential Lévy models. J. Appl. Probab. 46(3), 609–628 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bender, C., Lindner, A., Schicks, M.: Finite variation of fractional Lévy processes. J. Theor. Probab. 25(2), 594–612 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bender, C., Sottinen, T., Valkeila, E.: Pricing by hedging and no-arbitrage beyond semimartingales. Finance Stoch. 12(4), 441–468 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Burnecki, K., Weron. A.: Fractional Lévy stable motion can model subdiffusive dynamics. Phys. Rev. E82, 021130 (2010)

    Google Scholar 

  7. Calvo, I., Sánchez, R., Carreras, A.: Fractional Lévy motion through paths integrals. J. Phys. A 42, 055003 (2009)

    Google Scholar 

  8. Chechkin, A.V., Gonchar, V. Yu.: A model for persistent Lévy motion. Physica A277, 312–326 (2000)

    Article  Google Scholar 

  9. Copson, E.T.: Asymptotic Expansions. Cambridge University Press, Cambridge (1965)

    Book  MATH  Google Scholar 

  10. Dimakis, A. G., Maragos, P.: Phase-modulated resonances modeled as self-similar processes with application to turbulent sounds. IEEE Trans. Signal Process. 53(11) (2005)

    Google Scholar 

  11. Eliazar, I.I., Shlesinger, M.F.: Langevin unification of fraction motions. J. Phys. A45, 162002 (2012)

    MathSciNet  Google Scholar 

  12. Feller, W.: An Introduction to Probability Theory and Its Applications, Vol. II. 2nd edn. John Wiley & Sons, Inc., New York (1971)

    Google Scholar 

  13. Gagnon, J.-S., Lovejoy, S., Schertzer, D.: Multifractal earth topography. Nonlinear process. geophys. 13 (5), 541–570 (2006)

    Article  Google Scholar 

  14. Hartman, P., Wintner, A.: On the infinitesimal generators of integral convolutions. Am. J. Math. 64, 273–298 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  15. Huillet, T.: Fractional Lévy motions and related processes. J. Phys. A 32, 7225 (1999)

    Google Scholar 

  16. Klüppelberg, C.: Subexponential distributions and characterizations of related classes. Probab. Th. Rel. Fields. 82, 259–269 (1989)

    Article  MATH  Google Scholar 

  17. Knopova, V., Kulik, A.: Exact asymptotic for distribution densities of Lévy functionals. Electronic J. Probab. 16, 1394–1433 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kogon, S.M. Manolakis, D.G.: Signal modeling with self-similar α-stable processes: the fractional levy stable motion model. IEEE Trans. Signal Process. 44(4), 1006–1010 (1996)

    Article  Google Scholar 

  19. Laskin, N., Lambadaris, I., Harmantzis, F., Devetsikiotis, M.: Fractional Lévy motion and its application to traffic modeling. Computer Networks (Special Issue on Long-Range Dependent Traffic Engineering) 40(3), 363–375 (2002)

    Google Scholar 

  20. Marquardt, T.: Fractional Lévy processes with an application to long memory moving average processes. Bernoulli 12(6), 1099–1126 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Painter, S., Patterson. L.: Fractional Lévy motion as a model for spatial variability in sedimentary rock. Geophys. Res. Let. 21(25), 2857–2860 (1994)

    Google Scholar 

  22. Rajput, B.S., Rosinski, J.: Spectral representations of infinitely divisible processes. Probab. Th. Rel. F. 82, 451–487 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman Hall, New York (1994)

    MATH  Google Scholar 

  24. Tikanmäki, H. Mishura, Yu.: Fractional Lévy processes as a result of compact interval integral transformation. Stoch. Anal. Appl. 29, 1081–1101 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Watkins, N. W., Credgington, D., Hnat, B., Chapman, S.C., Freeman, M.P., Greenhough. J.: Towards synthesis of solar wind and geomagnetic scaling exponents: A fractional Lévy motion model. Space Sci. Rev. 121 (1–4), 271–284 (2005)

    Google Scholar 

  26. Weron, A., Burnecki, K., Mercik, Sz., Weron, K.: Complete description of all self-similar models driven by Lévy stable noise. Phys. Rev. E71 (2005), 016113 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors thank the referee for helpful remarks and gratefully acknowledge the DFG Grant Schi 419/8-1. The first-named author also gratefully acknowledges the Scholarship of the President of Ukraine for young scientists (2011–2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria P. Knopova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Knopova, V.P., Kulik, A.M. (2014). Asymptotic Behaviour of the Distribution Density of the Fractional Lévy Motion. In: Korolyuk, V., Limnios, N., Mishura, Y., Sakhno, L., Shevchenko, G. (eds) Modern Stochastics and Applications. Springer Optimization and Its Applications, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-03512-3_11

Download citation

Publish with us

Policies and ethics