Advertisement

Compliance Error Compensation in Robotic-Based Milling

  • Alexandr Klimchik
  • Dmitry Bondarenko
  • Anatol Pashkevich
  • Sébastien Briot
  • Benoît Furet
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 283)

Abstract

This chapter deals with the problem of compliance errors compensation in robotic-based milling. Contrary to previous works that assume that the forces/torques generated by the manufacturing process are constant, the interaction between the milling tool and the workpiece is modeled in details. It takes into account the tool geometry, the number of teeth, the feed rate, the spindle rotation speed and the properties of the material to be processed. Due to high level of the disturbing forces/torques, the developed compensation technique is based on the non-linear stiffness model that allows us to modify the target trajectory taking into account nonlinearities and to avoid the chattering effect. Illustrative example is presented that deals with robotic-based milling of aluminum alloy.

Keywords

Industrial robot Milling Compliance error compensation Dynamic machining force model Non-linear stiffness model 

Notes

Acknowledgments

The authors would like to acknowledge the financial support of the ANR, France (Project ANR-2010-SEGI-003-02-COROUSSO), FEDER ROBOTEX, France and the Region “Pays de la Loire”, France.

References

  1. 1.
    Dépincé, P., Hascoët, J.-Y.: Active integration of tool deflection effects in end milling. Part 2. Compensation of tool deflection. Int. J. Mach. Tools Manuf. 46, 945–956 (2006)CrossRefGoogle Scholar
  2. 2.
    Altintas, Y.: Manufacturing Automation, Metal Cutting Mechanics, Machine Tool Vibrations and CNC Design. Cambridge University Press, New York (2000)Google Scholar
  3. 3.
    Eastwood, S.J., Webb, P.: A gravitational deflection compensation strategy for HPKMs. Robot. Comput. Integr. Manuf. 26, 694–702 (2010)CrossRefGoogle Scholar
  4. 4.
    Alici, G., Shirinzadeh, B.: Enhanced stiffness modeling, identification and characterization for robot manipulators. In: Proceedings of IEEE Transactions on Robotics vol. 21, pp. 554–564 (2005)Google Scholar
  5. 5.
    Chen, S., Kao, I.: Conservative congruence transformation for toint and cartesian stiffness matrices of robotic hands and fingers. Int. J. Robot. Res. 19(9), 835–847 (2000)CrossRefGoogle Scholar
  6. 6.
    Kövecses, J., Angeles, J.: The stiffness matrix in elastically articulated rigid-body systems. Multibody Sys. Dyn. 18(2), 169–184 (2007)Google Scholar
  7. 7.
    Pashkevich, A., Klimchik, A., Chablat, D.: Enhanced stiffness modeling of manipulators with passive joints. Mech. Mach. Theory 46(5), 662–679 (2011)CrossRefMATHGoogle Scholar
  8. 8.
    Tyapin, I., Hovland, G.: Kinematic and elastostatic design optimization of the 3-DOF Gantry-Tau parallel kinamatic manipulator. Model. Ident. Control 30(2), 39–56 (2009)CrossRefGoogle Scholar
  9. 9.
    Su, H.-J., McCarthy, J.M.: A polynomial homotopy formulation of the inverse static analyses of planar compliant mechanisms. J. Mech. Des. 128(4), 776–786 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Briot, S., Pashkevich, A., Chablat, D.: Reduced elastodynamic modelling of parallel robots for the computation of their natural frequencies. In: 13th World Congress in Mechanism and Machine Science, pp. 19–25. Guanajuato, Mexico (2011)Google Scholar
  11. 11.
    Ritou, M., Garnier, S., Furet, B., Hascoet, J.Y.: A new versatile in-process monitoring system for milling. Int. J. Mach. Tools Manuf. 46(15), 2026–2035 (2006)CrossRefGoogle Scholar
  12. 12.
    Brissaud, D., Gouskov, A., Paris, H., Tichkiewitch, S.: The fractional model for the determination of the cutting forces. Asian Int. J. Sci. Technol. Prod. Manuf. 1, 17–25 (2008)Google Scholar
  13. 13.
    Merchant, M.E.: Mechanics of metal cutting process. I-Orthogonal cutting and type 2 chip. J. Appl. Phys. 16(5), 267–275 (1945)CrossRefGoogle Scholar
  14. 14.
    Laporte, S., Knevez, J.-Y., Cahuc, O., Darnis, P.: Phenomenological model for drilling operation. Int. J. Adv. Manuf. Technol. 40, 1–11 (2009)Google Scholar
  15. 15.
    Tlusty, J., Ismail, F.: Basic non-linearity in machining chatter. Ann. CIRP 30(1), 299–304 (1981)CrossRefGoogle Scholar
  16. 16.
    Gong, C., Yuan, J., Ni, J.: Nongeometric error identification and compensation for robotic system by inverse calibration. Int. J. Mach. Tools Manuf. 40(14), 2119–2137 (2000)CrossRefGoogle Scholar
  17. 17.
    Dumas, C., Caro, S., Garnier, S., Furet, B.: Joint stiffness identification of six-revolute industrial serial robots. Robot. Comput. Integr. Manuf. 27(4), 881–888 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexandr Klimchik
    • 1
    • 2
  • Dmitry Bondarenko
    • 1
    • 2
  • Anatol Pashkevich
    • 1
    • 2
  • Sébastien Briot
    • 2
  • Benoît Furet
    • 2
    • 3
  1. 1.Ecole des Mines de NantesNantesFrance
  2. 2.Institut de Recherches en Communications et Cybernétique de NantesNantesFrance
  3. 3.Quai de TourvilleUniversité de NantesNantesFrance

Personalised recommendations