Real-Time Visual Servoing Based on New Global Visual Features

  • Laroussi Hammouda
  • Khaled Kaaniche
  • Hassen Mekki
  • Mohamed Chtourou
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 283)

Abstract

This chapter proposes a new approach to achieve real-time visual servoing tasks. Our contribution consists in the definition of new global visual features as a random distribution of limited set of pixels luminance. The new method, based on a random process, reduces the computation time of the visual servoing scheme and removes matching and tracking process. Experimental results validate the proposed approach and show its robustness regarding to the image content.

Keywords

Visual servoing Global visual features Mobile robot 

References

  1. 1.
    Chaumette, F., Hutchinson, S.: Visual servoing and visual tracking. In: Siciliano, B., Khatib, O. (eds.) Handbook of Robotics, chapter 24, pp. 563–583. Springer, Berlin (2008)Google Scholar
  2. 2.
    Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. Robot. Autom. 8(3), 313–326 (1992)CrossRefGoogle Scholar
  3. 3.
    Chaumette, F., Hutchinson, S.: Visual servo control, part II: Advanced approaches. IEEE Robot. Autom. Mag. 14(1), 109–118 (2007)Google Scholar
  4. 4.
    Collewet, C., Marchand, E., Chaumette, F.: Visual servoing set free from image processing. In: IEEE International Conference on Robotics and Automation, pp. 81–86. Pasadena, CA (2008)Google Scholar
  5. 5.
    Chaumette, F., Hutchinson, S.: Application of moment invariants to visual servoing. In: IEEE International Conference on Robotics and Automation, pp 4276–4281. Taiwan (2003)Google Scholar
  6. 6.
    Dame, A., Marchand, E.: Entropy-based visual servoing. In: IEEE ICRA’09, pp. 707–713. Kobe (2009)Google Scholar
  7. 7.
    Marchand, E., Collewet, C.: Using image gradient as a visual feature for visual servoing. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5687–5692. Taiwan (2010)Google Scholar
  8. 8.
    Hafez, A., Achar, S., Jawahar, C.: Visual servoing based on gaussian mixture models. In: IEEE International Conference on Robotics and Automation, pp. 3225–3230. Pasadena, California (2008)Google Scholar
  9. 9.
    Collewet, C., Marchand, E.: Photometric visual servoing. IEEE Trans. Robotic 27(4), 828–834 (2011)Google Scholar
  10. 10.
    Chaumette, F., Hutchinson, S.: Visual servo control, part I: basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)CrossRefGoogle Scholar
  11. 11.
    Marchand, E.: Control camera and light source positions using image gradient information. In: IEEE International Conference on Robotics and Automation ICRA’07, pp. 417–422. Roma (2007)Google Scholar
  12. 12.
    Hafez, A., Jawahar, C.: Improvement to the minimization of hybrid error functions for pose alignement. In: IEEE International Conference on Robotics and Automation Control and Vision, Singapore (2006)Google Scholar
  13. 13.
    Hafez, A., Jawahar, C.: Visual servoing by optimization of a 2D/3D hybrid objective function. In: IEEE International Conference on Robotics and Automation, pp. 1691–1696. Roma (2007)Google Scholar
  14. 14.
    Collewet, C., Marchand, E., Chaumette, F. (ed.) Luminance: a new visual feature for visual servoing. In: Visual Servoing via Advanced Numerical Methods, LNCIS 401, pp. 71–90. Springer, Berlin (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Laroussi Hammouda
    • 1
  • Khaled Kaaniche
    • 1
    • 2
  • Hassen Mekki
    • 1
    • 2
  • Mohamed Chtourou
    • 1
  1. 1.Control and Energies Managment LaboratoryUniversity of SfaxSfaxTunisia
  2. 2.National School of Engineering of SousseUniversity of SousseSousseTunisia

Personalised recommendations