A Combined Direct and Indirect Adaptive Control Scheme for a Wheeled Mobile Robot using Multiple Models

Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 283)

Abstract

This chapter presents a method about trajectory tracking control of a nonholonomic wheeled mobile robot. The main focus of the chapter is to improve the transient response for the trajectory tracking control of mobile robots including dynamic parameter uncertainties. An adaptive combined direct and indirect control scheme is used for compensation of tracking errors in case of dynamic parameter uncertainties. The transient behavior for the adaptive tracking control is improved by a multiple models approach. The overall control system includes both a kinematic and dynamic controller. The kinematic controller produces linear and angular velocities required for mobile robot to track desired trajectory. The combined direct and indirect adaptive dynamic controller with adaptive multiple identification models takes these velocities as inputs and produces torques that will be applied to the robot. Simulation results indicate effectiveness of the proposed control scheme.

Keywords

Combined direct and indirect adaptive control Trajectory tracking control Mobile robots Multiple models approach 

References

  1. 1.
    Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A stable tracking control method for an autonomous mobile robot. In: International Conference on Robotics and Automation, USA (1990)Google Scholar
  2. 2.
    Yun, X., Yamamoto, Y.: On feedback linearization of mobile robots. University of Pennsylvania, department of Computer and information science Technical reports (1992)Google Scholar
  3. 3.
    Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot. Backstepping kinematics into dynamics. In: Proceedings of the 34th Conference on Decision and Control. New Orleans, LA (1995)Google Scholar
  4. 4.
    De La Cruz, C., Carelli, R., Bastos, T.F.: Switching adaptive control of mobile robots. In: IEEE International Symposium on Industrial Electronics (2008)Google Scholar
  5. 5.
    Martins, F.N., Celeste, W.C., Carelli, R., Sarcinelli-Filho, M., Bastos-Filho, T.: An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control Eng. Pract. 16, 1354–1363 (2008)Google Scholar
  6. 6.
    Shojaei, K., Shahri, A.M., Tarakameh, A., Tabibian, B.: Adaptive trajectory tracking control of a differential drive wheeled mobile robot. Robotica 29(3), 391–402 (2011)CrossRefGoogle Scholar
  7. 7.
    Zhengcai, C., Yingtao, Z., Qidi, W.: Adaptive trajectory tracking control for a nonholonomic mobile robot. Chin. J. Mech. Eng. 24(3), 1–7 (2011)Google Scholar
  8. 8.
    Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Autom. 16(5), 609–615 (2000)CrossRefGoogle Scholar
  9. 9.
    Pourboghrat, F., Karlsson, M.P.: Adaptive control Of dynamic mobile robots with nonholonomic constraints. Comput. Electr. Eng. 28(4), 241–253 (2002)CrossRefMATHGoogle Scholar
  10. 10.
    Petrov, P.: Modeling and adaptive path control of a differential drive mobile robot. In: Proceedings of the 12th WSEAS International Conference on Automatic Control, Modellig and Simulation (2010)Google Scholar
  11. 11.
    Narendra, K.S., Balakrishnan, J.: Adaptive control using multiple models. IEEE Trans. Autom. Control 42(2), 171–187 (1997)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Narendra, K.S., George, K.: Adaptive control of simple nonlinear systems using multiple models. In: Proceedings of the American Control Conference Anchorage (2002)Google Scholar
  13. 13.
    Cezayirli, A., Ciliz, M.K.: Transient performance enhancement of direct adaptive control of nonlinear systems using multiple models and switching. IET Control Theory Appl. 1(6), 1711–1725 (2007)CrossRefGoogle Scholar
  14. 14.
    Ciliz, K., Narendra, K.S.: Intelligent control of robotic manipulators: a multiple model based approach. In: IEEE International Conference on Intelligent Robots and Systems 95. Human robot interaction and cooperative robots, pp. 422–427 (1995)Google Scholar
  15. 15.
    Ciliz, K., Cezayirli, A.: Combined direct and indirect control of robot manipulators using multiple models. In: Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics, Singapore (2004)Google Scholar
  16. 16.
    Ye, X.: Nonlinear adaptive control using multiple identification models. Syst. Control Lett. 3, 488–491 (2008)Google Scholar
  17. 17.
    Ciliz, M.K., Cezayirli, A.: Increased transient performance for adaptive control of feedback linearizable systems using multiple models. Int. J. Control 79(10), 1205–1215 (2006)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Ciliz, K., Cezayirli, A.: Adaptive tracking for nonlinear plants using multiple identification models and state-feedback. In: IEEE Industrial Electronics, IECON 2006–32nd Annual Conference (2006)Google Scholar
  19. 19.
    Cezayirli, A., Ciliz, M.K.: Indirect adaptive control of non-linear systems using multiple identfication models and switching. Int. J. Control 81(9), 1434–1450 (2008)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Ciliz, K., Narendra, K.S.: Multiple model based adaptive control of robotic manipulators. In: Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista, FL (1994)Google Scholar
  21. 21.
    Ciliz, K., Tuncay, M.Ö.: Comparative experiments with a multiple model based adaptive controller for SCARA type direct drive manipulator. Robotica 23(6), 721–729 (2005)CrossRefGoogle Scholar
  22. 22.
    De La Cruz, C., Carelli, R.: Dynamic modeling and centralized formation control of mobile robots. In: IEEE Industrial Electronics, IECON 2006 (2006)Google Scholar
  23. 23.
    D’Amico, A., Ippoliti, G., Longhi, S.: A multiple models approach for adaptation and learning in mobile robots control. J. Intell. Rob. Syst. 47, 3–31 (2006)CrossRefGoogle Scholar
  24. 24.
    Wison, D.G., Robinett, R.D.: Robust adaptive backstepping control for a nonholonomic mobile robot. In: IEEE International Conference on Systems, Man, and Cybernetics (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Electrical and Electronics Engineering DepartmentAnadolu UniversityEskisehirTurkey
  2. 2.Computer Engineering DepartmentEskisehir Osmangazi UniversityEskisehirTurkey

Personalised recommendations