Metrics for Path Planning of Reconfigurable Robots in Uneven Terrain

Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 283)


In this chapter we present metrics for rough terrain motion planning used by our hierarchical planner. We employ a two-stage planning approach which allows us to use different cost functions for an initial path search and a detailed motion planning step. To quickly find an initial path we use a roughness quantification and the operating limits of the robot, which allow a fast assessment of the drivability. We then refine the initial path in rough regions of the environment by planning the complete robot states. To determine the desired robot configurations our newly developed metrics consider the system’s actuators, its safety and the time required for traversal. Real world experiments prove the validity and feasibility of the cost functions.


Metrics Rough terrain Reconfigurable chassis Motion planning Mobile robot Autonomy 


  1. 1.
    Jacoff, A.S., Downs, A.J., Virts, A.M., Messina, E.R.: Stepfield pallets: repeatable terrain for evaluating robot mobility. In: Performance Metrics for Intelligent Systems (PerMIS) Workshop (2008)Google Scholar
  2. 2.
    Molino, V., Madhavan, R., Messina, E., Downs, A., Balakirsky, S., Jacoff, A.: Traversability metrics for rough terrain applied to repeatable test methods. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2007)Google Scholar
  3. 3.
    Iagnemma, K., Dubowsky, S.: Rough terrain motion planning. In: Mobile Robots in Rough Terrain—Estimation, Motion Planning, and Control with Application to Planetary Rovers, pp. 51–79. Springer Tracts in Advanced Robotics (2004)Google Scholar
  4. 4.
    Howard, T.M., Kelly, A.: Optimal rough terrain trajectory generation for wheeled mobile robots. Int. J. Robot. Res. 26, 141–166 (2007)CrossRefGoogle Scholar
  5. 5.
    Iagnemma, K., Kang, S., Shibly, H., Dubowsky, S.: Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers. IEEE Trans. Rob. 20, 921–927 (2004)CrossRefGoogle Scholar
  6. 6.
    Seraji, H.: Traversability index: a new concept for planetary rovers. In: IEEE International Conference on Robotics and Automation (ICRA) (1999)Google Scholar
  7. 7.
    Howard, A., Seraji, H., Tunstel, E.: A rule-based fuzzy traversability index for mobile robot navigation. In: IEEE International Conference on Robotics and Automation (ICRA) (2001)Google Scholar
  8. 8.
    Garcia, E., Estremera, J., de Santos, P.G.: A comparative study of stability margins for walking machines. Robotica 20, 595–606 (2002)CrossRefGoogle Scholar
  9. 9.
    Miro, J., Dumonteil, G., Beck, C., Dissanayake, G.: A kyno-dynamic metric to plan stable paths over uneven terrain. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2010)Google Scholar
  10. 10.
    Hirose, S., Tsukagoshi, H., Yoneda, K.: Normalized energy stability margin and its contour of walking vehicles on rough terrain. In: IEEE International Conference on Robotics and Automation (ICRA) (2001)Google Scholar
  11. 11.
    Magid, E., Ozawa, K., Tsubouchi, T., Koyanagi, E., Yoshida, T.: Rescue robot navigation: static stability estimation in random step environment. In: Carpin, S., Noda, I., Pagello, E., Reggiani, M., von Stryk, O. (eds.) Simulation, Modeling and Programming for Autonomous Robots. Lecture Notes in Computer Science, vol. 5325, pp. 305–316, Springer, Heidelberg (2008)Google Scholar
  12. 12.
    Dornhege, C., Kleiner, A.: Behavior maps for online planning of obstacle negotiation and climbing on rough terrain. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2007)Google Scholar
  13. 13.
    Rusu, R.B., Sundaresan, A., Morisset, B., Hauser, K., Agrawal, M., Latombe, J.C., Beetz, M.: Leaving flatland: efficient real-time three-dimensional perception and motion planning. J. Field Rob. 26, 841–862 (2009)CrossRefGoogle Scholar
  14. 14.
    Brunner, M., Bruggemann, B., Schulz, D.: Towards autonomously traversing complex obstacles with mobile robots with adjustable chassis. In: International Carpathian Control Conference (2012)Google Scholar
  15. 15.
    Brunner, M., Brueggemann, B., Schulz, D.: Autonomously traversing obstacles: metrics for path planning of reconfigurable robots on rough terrain. In: International Conference on Informatics in Control, Automation and Robotics (ICINCO) (Best Paper Award) (2012)Google Scholar
  16. 16.
    Messuri, D.A.: Optimization of the locomotion of a legged vehicle with respect to maneuverability. PhD thesis, Ohio State University (1985)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael Brunner
    • 1
  • Bernd Brüggemann
    • 1
  • Dirk Schulz
    • 1
  1. 1.Fraunhofer Institute for Communication, Information, Processing and Ergonomics FKIEWachtbergGermany

Personalised recommendations