Skip to main content

Modeling Emergence in Neuroprotective Regulatory Networks

  • Conference paper
Complex Sciences (Complex 2012)

Abstract

The use of predictive modeling in the analysis of gene expression data can greatly accelerate the pace of scientific discovery in biomedical research by enabling in silico experimentation to test disease triggers and potential drug therapies. Techniques such as agent-based modeling and multi-agent simulations are of particular interest as they support the discovery of emergent pathways, as opposed to other dynamic modeling approaches such as dynamic Bayesian nets and system dynamics. Thus far, emergence-modeling techniques have been primarily applied at the multi-cellular level, or have focused on signaling and metabolic networks. We present an approach where emergence modeling is extended to regulatory networks and demonstrate its application to the discovery of neuroprotective pathways. An initial evaluation of the approach indicates that emergence modeling provides novel insights for the analysis of regulatory networks which can advance the discovery of acute treatments for stroke and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Internet Stroke Center, http://www.strokecenter.org/patients/~about-stroke/stroke-statistics (accessed on June 7, 2012)

  2. O’Collins, V.E., Macleod, M.R., Donnan, G.A., Horky, L.L., van der Worp, B.H., Howells, D.W.: 1,026 experimental treatments in acute stroke. Ann. Neurol. 59(3), 467–477 (2006)

    Article  Google Scholar 

  3. Savitz, S.I.: A critical appraisal of the NXY-059 neuroprotection studies for acute stroke: a need for more rigorous testing of neuroprotective agents in animal models of stroke. Exp. Neurol. 205(1), 20–25 (2007)

    Article  Google Scholar 

  4. Fisher, M., Feuerstein, G., Howells, D.W., Hurn, P.D., Kent, T.A., Savitz, S.I., Lo, E.H., STAIR Group: Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 40(6), 2244–2250 (2009)

    Article  Google Scholar 

  5. Sahota, P., Savitz, S.I.: Investigational therapies for ischemic stroke: neuroprotection and neurorecovery. Neurotherapeutics 8(3), 434–451 (2011)

    Article  Google Scholar 

  6. Zhang, L., Athale, C., Deisboeck, T.: Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J. Theor. Biol. 244(1), 96–107 (2007)

    Article  MathSciNet  Google Scholar 

  7. Engelberg, J., Ropella, G., Hunt, C.: Essential operating principles for tumor spheroid growth. BMC Syst. Biol. 2(1), 110 (2008)

    Article  Google Scholar 

  8. Lollini, P., Motta, S., Pappalardo, F.: Discovery of cancer vaccination protocols with a genetic algorithm driving an agent based simulator. BMC Bioinf. 7(1), 352 (2006)

    Article  Google Scholar 

  9. Li, N., Verdolini, K., Clermont, G., Mi, Q., Rubinstein, E., Hebda, P., Vodovotz, Y.: A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury. PLoS ONE 3(7), e2789 (2008)

    Google Scholar 

  10. Gonzalez, P., Cardenas, M., Camacho, D., Franyuti, A., Rosas, O., Lagunez-Otero, J.: Cellulat: an agent-based intracellular signalling model. Biosystems 68(2-3), 171–185 (2003)

    Article  Google Scholar 

  11. Pogson, M., Smallwood, R., Qwarnstrom, E., Holcombe, M.: Formal agent-based modelling of intracellular chemical interactions. Biosystems 85(1), 37–45 (2006)

    Article  Google Scholar 

  12. Pogson, M., Holcombe, M., Smallwood, R., Qwarnstrom, E.: Introducing Spatial Information into Predictive NF- κB Modelling-An Agent-Based Approach. PLoS ONE 3(6), e2367 (2008)

    Google Scholar 

  13. Klann, M., Lapin, A., Reuss, M.: Agent-based simulation of reactions in the crowded and structured intracellular environment: Influence of mobility and location of the reactants. BMC Syst. Biol. 5(1), 71 (2011)

    Article  Google Scholar 

  14. Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling. BMC Bioinf. 8(suppl. 6), S9 (2007)

    Google Scholar 

  15. Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9(10), 770–780 (2008)

    Article  Google Scholar 

  16. Stenzel-Poore, M.P., Stevens, S.L., Xiong, Z., Lessov, N.S., Harrington, C.A., Mori, M., Meller, R., Rosenzweig, H.L., Tobar, E., Shaw, T.E., Chu, X., Simon, R.P.: Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 362(9389), 1028–1037 (2003)

    Article  Google Scholar 

  17. Stevens, S.L., Ciesielski, T.M., Marsh, B.J., Yang, T., Homen, D.S., Boule, J.L., Lessov, N.S., Simon, R.P., Stenzel-Poore, M.P.: Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J. Cereb. Blood Flow Metab. 28(5), 1040–1047 (2008)

    Article  Google Scholar 

  18. Marsh, B., et al.: Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J. Neurosci. 29, 9839–9849 (2009)

    Article  Google Scholar 

  19. Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., Speed, T.P.: Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data. Biostatistics 4(2), 249–264 (2003)

    Article  MATH  Google Scholar 

  20. Bonneau, R., et al.: The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 7, R36 (2006)

    Google Scholar 

  21. Efron, B., Johnstone, I., Hastie, T., Tibshirani, R.: Least angle regression. Annals of Statistics 32, 407–499 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Statist. Soc. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  23. McDermott, J.E., Archuleta, M., Stevens, S.L., Stenzel-Poore, M.P., Sanfilippo, A.: Defining the players in higher-order networks: predictive modeling for reverse engineering functional influence networks. In: Pac. Symp. Biocomput., pp. 314–325 (2011a)

    Google Scholar 

  24. Mcdermott, J., Jarman, K., Taylor, R., Lancaster, M., Stevens, S., Vartanian, K., Stenzel-Poore, M., Sanfilippo, A.: Modeling Cumulative Change of Dynamic Regulatory Processes in Stroke. PLoS Computational Biology (forthcoming)

    Google Scholar 

  25. Camazine, S., Deneubourg, J., Franks, N., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press (2011)

    Google Scholar 

  26. Wilensky, U.: NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL (1999), http://ccl.northwestern.edu/netlogo/

  27. Lachmann, A., Xu, H., Krishnan, J., Berger, S.I., Mazloom, A.R., et al.: ChEA: Transcription Factor Regulation Inferred from Integrating Genome-Wide ChIP-X Experiments. Bioinformatics (2010)

    Google Scholar 

  28. Peri, S., Navarro, J.D., Kristiansen, T.Z., Amanchy, R., Surendranath, V., et al.: Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res. 32, D497–D501 (2004)

    Google Scholar 

  29. Yu, H., Luscombe, N.M., Lu, H.X., Zhu, X., Xia, Y., et al.: Annotation Transfer Between Genomes: Protein-Protein Interologs and Protein-DNA Regulogs. Genome Res. 14, 1107–1118 (2004)

    Article  Google Scholar 

  30. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdottir, H., Tamayo, P., et al.: Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011)

    Article  Google Scholar 

  31. Kim, W.K., Krumpelman, C., Marcotte, E.M.: Inferring mouse gene functions from genomic-scale data using a combined functional network/classification strategy. Genome Biology 9(suppl. 1), S5 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Sanfilippo, A.P., Haack, J.N., McDermott, J.E., Stevens, S.L., Stenzel-Poore, M.P. (2013). Modeling Emergence in Neuroprotective Regulatory Networks. In: Glass, K., Colbaugh, R., Ormerod, P., Tsao, J. (eds) Complex Sciences. Complex 2012. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-03473-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03473-7_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03472-0

  • Online ISBN: 978-3-319-03473-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics