Thermal Degradation of Bio-nanocomposites

  • Kieran A. MurrayEmail author
  • John A. Killion
  • Ian Major
  • Luke M. Geever
Part of the Engineering Materials book series (ENG.MAT.)


Bio-nanocomposites have attracted a great deal of attention over the last number of years due to the excellent characteristics the material has to offer. With ever increasing demands of environmental controls, more sustainable materials like bio-nanocomposites are required to substitute the various petropolymers utilised nowadays. These bio-based polymers provide exceptional performance and have smart properties that have proven useful to the food packaging industry and a wide range of other applications. This chapter reviews the recent developments of bio-nanocomposites where the related biodegradable polymers include Polylactic acid (PLA), polycaprolactone (PCL), polyhydroxyvalerate (PHV), polyhydroxyalkanoates (PHAs), polyhydroxybutyrate (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(d,l-lactide) (PDLLA). A concise history outlining the development of bio-nanocomposites materials is explored, while the importance of environmental conditions and in particular the rate of biodegradability is highlighted. Furthermore, this chapter addresses the steps of thermal degradation and the systematic approaches used to overcome these concerns. It discusses the behaviour of various nanoparticles on the thermal stability of biopolymers and other topics related to research challenges, future trends and applications.


Thermal Stability Thermal Degradation Polylactic Acid Chain Scission Aliphatic Polyester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Shah, A.A., Hasan, F., Hameed, A., Ahmed, S.: Biological degradation of plastics: a comprehensive review. Biotechnol. Adv. 26, 246–265 (2008)CrossRefGoogle Scholar
  2. 2.
    Jenck, J.F., Agterberg, F., Droescher, M.J.: Products and processes for a sustainable chemical industry: a review of achievements and prospects. Green Chem. 6, 544–556 (2004)CrossRefGoogle Scholar
  3. 3.
    Kümmerer, K.: Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chem. 9, 899–907 (2007)CrossRefGoogle Scholar
  4. 4.
    Clarinval, A.M., Halleux, J.: Classification of biodegradable polymers, pp. 3–31. CRC Press, Boca Raton (2005)Google Scholar
  5. 5.
    Chandra, R., Rustgi, R.: Biodegradable polymers. Prog. Polym. Sci. 23, 1273–1335 (1998)CrossRefGoogle Scholar
  6. 6.
    Rhim, J.W., Park, H.M., Ha, C.S.: Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 38, 1629–1652 (2013)CrossRefGoogle Scholar
  7. 7.
    Bikiaris, D.N.: Nanocomposites of aliphatic polyesters: an overview of the effect of different nanofillers on enzymatic hydrolysis and biodegradation of polyesters. Polym. Degrad. Stab. 98, 1908–1928 (2013)CrossRefGoogle Scholar
  8. 8.
    Shimao, M.: Biodegradation of plastics. Curr. Opin. Biotechnol. 12, 242–247 (2001)CrossRefGoogle Scholar
  9. 9.
    Gandini, A.: Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41, 9491–9504 (2008)CrossRefGoogle Scholar
  10. 10.
    Koh, H.C., Park, J.S., Jeong, M.A., Hwang, H.Y., Hong, Y.T., Ha, S.Y., et al.: Preparation and gas permeation properties of biodegradable polymer/layered silicate nanocomposite membranes. Desalination 233, 201–209 (2008)CrossRefGoogle Scholar
  11. 11.
    Trznadel, M.: Biodegradable polymer materials. Int Polym Sci Technol. 22, 58–65 (1995)Google Scholar
  12. 12.
    Pandey, J.K., Raghunatha R.K., Pratheep K.A., Singh, R.P.: An overview on the degradability of polymer nanocomposites. Polym Degrad Stab. 88, pp. 234−50 (2005)Google Scholar
  13. 13.
    Kumar, A.P., Depan, D., Singh Tomer, N., Singh, R.P.: Nanoscale particles for polymer degradation and stabilization-trends and future perspectives. Prog in Polym Sci (Oxford) 34, 479–515 (2009)CrossRefGoogle Scholar
  14. 14.
    Chrissafis, K., Bikiaris, D.: Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim. Acta 523, 1–24 (2011)CrossRefGoogle Scholar
  15. 15.
    Herron, N., Thorn, D.L.: Nanoparticles: uses and relationships to molecular cluster compounds. Adv. Mater. 10, 1173–1184 (1998)CrossRefGoogle Scholar
  16. 16.
    Carter, L.W., Hendricks, J.G., Bolley, D.S.: Elastomer reinforced with a modified clay. Google patents (1950)Google Scholar
  17. 17.
    Deguchi, R., Nishio, T., Okada, A.: Polyamide composite material and method for preparing the same. Google patents (1992)Google Scholar
  18. 18.
    Wang, Y., Chen, F.-B., Li, Y.-C., Wu, K.-C.: Melt processing of polypropylene/clay nanocomposites modified with maleated polypropylene compatibilizers. Compos. B Eng. 35, 111–124 (2004)CrossRefGoogle Scholar
  19. 19.
    Hasegawa, N., Kawasumi, M., Kato, M., Usuki, A., Okada, A.: Preparation and mechanical properties of polypropylene-clay hybrids using a maleic anhydride-modified polypropylene oligomer. J. Appl. Polym. Sci. 67, 87–92 (1998)CrossRefGoogle Scholar
  20. 20.
    Liang, Z.M., Yin, J.: Poly(etherimide)/montmorillonite nanocomposites prepared by melt intercalation. J. Appl. Polym. Sci. 90, 1857–1863 (2003)CrossRefGoogle Scholar
  21. 21.
    Raquez, J.M., Habibi, Y., Murariu, M., Dubois, P.: Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 38, 1504–1542 (2013)CrossRefGoogle Scholar
  22. 22.
    Bafna, A., Beaucage, G., Mirabella, F., Mehta, S.: 3D hierarchical orientation in polymer–clay nanocomposite films. Polymer 44, 1103–1115 (2003)CrossRefGoogle Scholar
  23. 23.
    Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng. R Reports 28, 1–63 (2000)CrossRefGoogle Scholar
  24. 24.
    Giannelis, E.P., Krishnamoorti, R., Manias, E.: Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv. Polym. Sci. 138, 108−147 (1999)Google Scholar
  25. 25.
    Dennis, H.R., Hunter, D.L., Chang, D., Kim, S., White, J.L., Cho, J.W., et al.: Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polym. 42, 9513–9522 (2001)CrossRefGoogle Scholar
  26. 26.
    Sinha Ray, S., Bousmina, M.: Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog. Mater Sci. 50, 962–1079 (2005)CrossRefGoogle Scholar
  27. 27.
    Sinha Ray, S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003)CrossRefGoogle Scholar
  28. 28.
    Chen, J.-S., Poliks, M.D., Ober, C.K., Zhang, Y., Wiesner, U., Giannelis, E.: Study of the interlayer expansion mechanism and thermal–mechanical properties of surface-initiated epoxy nanocomposites. Polymer 43, 4895–4904 (2002)CrossRefGoogle Scholar
  29. 29.
    Prime, R.B., Bair, H.E., Vyazovkin, S., Gallagher, P.K., Riga, A.: Thermogravimetric analysis (TGA). In: Menczel, D.J., Prime, B.R. (eds.) Thermal Analysis of Polymers, p. 241. Wiley, Hoboken (2009)CrossRefGoogle Scholar
  30. 30.
    Earnest, C.M., Compositional Analysis by Thermogravimetry: ASTM International (1988)Google Scholar
  31. 31.
    Kumar, P.: Development of Bio-nanocomposite Films with Enhance Mechanical and Barrier Properties using Extrusion Processing. North Carolina State University, Raleigh (2009)Google Scholar
  32. 32.
    Bikiaris, D.: Can nanoparticles really enhance thermal stability of polymers? Part II: An overview on thermal decomposition of polycondensation polymers. Thermochim. Acta 523, 25–45 (2011)CrossRefGoogle Scholar
  33. 33.
    Yang, K.K., Wang, X.L., YZ, W.: Progress in nanocomposite of biodegradable polymer. J Ind Eng Chem. 13, 485–500 (2007)Google Scholar
  34. 34.
    Mohanty, A.K., Wibowo, A., Misra, M., Drzal, L.T.: Development of renewable resource–based cellulose acetate bioplastic: effect of process engineering on the performance of cellulosic plastics. Polym. Eng. Sci. 43, 1151–1161 (2003)CrossRefGoogle Scholar
  35. 35.
    Bandyopadhyay, S., Chen, R., Giannelis, E.P.: Biodegradable organic-inorganic hybrids based on poly(L-lactide). Polym. Mater. Sci. Eng. 81, 159–160 (1999)Google Scholar
  36. 36.
    Pluta, M., Galeski, A., Alexandre, M., Paul, M.A., Dubois, P.: Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties. J. Appl. Polym. Sci. 86, 1497–1506 (2002)CrossRefGoogle Scholar
  37. 37.
    Chen, C.X., Yoon, J.S.: Morphology and thermal properties of poly(L-lactide)/poly(butylene succinate-co-butylene adipate) compounded with twice functionalized clay. J. Polym. Sci. Part B: Polym. Phys. 43, 478–487 (2005)CrossRefGoogle Scholar
  38. 38.
    Marras, S.I., Zuburtikudis, I., Panayiotou, C.: Nanostructure vs. microstructure: morphological and thermomechanical characterization of poly(l-lactic acid)/layered silicate hybrids. Eur. Polymer J. 43, 2191–2206 (2007)CrossRefGoogle Scholar
  39. 39.
    Chang, J.H., An, Y.U., Cho, D., Giannelis, E.P.: Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica (II). Polymer 44, 3715–3720 (2003)CrossRefGoogle Scholar
  40. 40.
    Chang, J.H., An, Y.U., Sur, G.S.: Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology and gas permeability. J. Polym. Sci., Part B: Polym. Phys. 41, 94–103 (2003)CrossRefGoogle Scholar
  41. 41.
    Paul, M.A., Alexandre, M., Degée, P., Calberg, C., Jérôme, R., Dubois, P.: Exfoliated polylactide/clay nanocomposites by in-situ coordination-insertion polymerization. Macromol. Rapid Commun. 24, 561–566 (2003)CrossRefGoogle Scholar
  42. 42.
    Paul, M.A., Alexandre, M., Degée, P., Henrist, C., Rulmont, A., Dubois, P.: New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44, 443–450 (2003)CrossRefGoogle Scholar
  43. 43.
    Zhou, Q., Xanthos, M.: Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym. Degrad. Stab. 94, 327–338 (2009)CrossRefGoogle Scholar
  44. 44.
    Najafi, N., Heuzey, M.C., Carreau, P.J., Wood-Adams, P.M.: Control of thermal degradation of polylactide (PLA)-clay nanocomposites using chain extenders. Polym. Degrad. Stab. 97, 554–565 (2012)CrossRefGoogle Scholar
  45. 45.
    Sivalingam, G., Madras, G.: Thermal degradation of binary physical mixtures and copolymers of poly(ε-caprolactone), poly(D, L-lactide), poly(glycolide). Polym. Degrad. Stab. 84, 393–398 (2004)CrossRefGoogle Scholar
  46. 46.
    Chrissafis, K., Antoniadis, G., Paraskevopoulos, K.M., Vassiliou, A., Bikiaris, D.N.: Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(ε-caprolactone) nanocomposites. Compos. Sci. Technol. 67, 2165–2174 (2007)CrossRefGoogle Scholar
  47. 47.
    Peng, H., Han, Y., Liu, T., Tjiu, W.C., He, C.: Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochim. Acta 502, 1–7 (2010)CrossRefGoogle Scholar
  48. 48.
    Carrasco, F., Gámez-Pérez, J., Santana, O.O., Maspoch, M.L.: Processing of poly(lactic acid)/organomontmorillonite nanocomposites: microstructure, thermal stability and kinetics of the thermal decomposition. Chem. Eng. J. 178, 451–460 (2011)CrossRefGoogle Scholar
  49. 49.
    Reich, L.: Elements of Polymer Degradation. McGraw-Hill, New York (1971)Google Scholar
  50. 50.
    Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O.O., Maspoch, M.L.: Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 95, 116–125 (2010)CrossRefGoogle Scholar
  51. 51.
    Moreira, F.K.V., Pedro, D.C.A., Glenn, G.M., Marconcini, J.M., Mattoso, L.H.C.: Brucite nanoplates reinforced starch bionanocomposites. Carbohydr. Polym. 92, 1743–1751 (2013)CrossRefGoogle Scholar
  52. 52.
    Espino-Pérez, E., Bras, J., Ducruet, V., Guinault, A., Dufresne, A., Domenek, S.: Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur. Polymer J. 49, 3144–3154 (2013)CrossRefGoogle Scholar
  53. 53.
    Araújo, A., Botelho, G., Oliveira, M., Machado, A.V.: Influence of clay organic modifier on the thermal-stability of PLA based nanocomposites. Appl. Clay Sci. 88–89, 144–150 (2014)CrossRefGoogle Scholar
  54. 54.
    Hakkarainen, M. Aliphatic Polyesters: abiotic and biotic degradation and degradation products. In: Albertsson, A.-C (ed.) Degradable Aliphatic Polyester, pp. 113–138. Springer, Heidelberg (2002)Google Scholar
  55. 55.
    Rosa, D.S., Lotto, N.T., Lopes, D.R., Guedes, C.G.F.: The use of roughness for evaluating the biodegradation of poly-β-(hydroxybutyrate) and poly-β-(hydroxybutyrate-co-β-valerate). Polym. Testing 23, 3–8 (2004)CrossRefGoogle Scholar
  56. 56.
    Lotto, N.T., Calil, M.R., Guedes, C.G.F., Rosa, D.S.: The effect of temperature on the biodegradation test. Mater. Sci. Eng. C 24, 659–662 (2004)CrossRefGoogle Scholar
  57. 57.
    Reddy, C.G.: R. Rashmi, Kalia, VC. Polyhydroxyalkanoates: an overview. Bioresour. Technol. 87, 137–146 (2003)CrossRefGoogle Scholar
  58. 58.
    de Jong, S.J., Arias, E.R., Rijkers, D.T.S., van Nostrum, C.F., Kettenes-van den Bosch, J.J., Hennink, W.E.: New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus. Polymer 42, 2795–2802 (2001)Google Scholar
  59. 59.
    Fukushima, K., Tabuani, D., Dottori, M., Armentano, I., Kenny, J.M., Camino, G.: Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites. Polym. Degrad. Stab. 96, 2120–2129 (2011)CrossRefGoogle Scholar
  60. 60.
    Zhou, Q., Xanthos, M.: Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polym. Degrad. Stab. 93, 1450–1459 (2008)CrossRefGoogle Scholar
  61. 61.
    Signori, F., Coltelli, M.-B., Bronco, S.: Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polym. Degrad. Stab. 94, 74–82 (2009)CrossRefGoogle Scholar
  62. 62.
    Gleadall, A., Pan, J., Kruft, M.-A., Kellomäki, M.: Degradation mechanisms of bioresorbable polyesters. Part 1. Effects of random scission, end scission and autocatalysis. Acta Biomater. 10, 2223–2232 (2014)CrossRefGoogle Scholar
  63. 63.
    Nieddu, E., Mazzucco, L., Gentile, P., Benko, T., Balbo, V., Mandrile, R., et al.: Preparation and biodegradation of clay composites of PLA. React. Funct. Polym. 69, 371–379 (2009)CrossRefGoogle Scholar
  64. 64.
    Chivrac, F., Pollet, E., Schmutz, M., Avérous, L.: Starch nano-biocomposites based on needle-like sepiolite clays. Carbohydr. Polym. 80, 145–153 (2010)CrossRefGoogle Scholar
  65. 65.
    Bruzaud, S., Bourmaud, A.: Thermal degradation and (nano)mechanical behavior of layered silicate reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. Polym. Testing 26, 652–659 (2007)CrossRefGoogle Scholar
  66. 66.
    Ten, E., Turtle, J., Bahr, D., Jiang, L., Wolcott, M.: Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 51, 2652–2660 (2010)CrossRefGoogle Scholar
  67. 67.
    Pantoustier, N., Alexandre, M., Degée, P., Calberg, C., Jérôme, R., Henrist, C., et al.: Poly(η-caprolactone) layered silicate nanocomposites: effect of clay surface modifiers on the melt intercalation process. e-Polymers 77 (2001)Google Scholar
  68. 68.
    Cyras, V.P., Manfredi, L.B., Ton-That, M.-T., Vázquez, A.: Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr. Polym. 73, 55–63 (2008)CrossRefGoogle Scholar
  69. 69.
    Schlemmer, D., Angélica, R.S., Sales, M.J.A.: Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites. Compos. Struct. 92, 2066–2070 (2010)CrossRefGoogle Scholar
  70. 70.
    Luiz de Paula E, Mano V, Pereira FV. : Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly (d,l-lactide). Polym Degrad Stab. 96, 1631−1638 (2011)Google Scholar
  71. 71.
    Hossain, K.Z., Ahmed, I., Parsons, A., Scotchford, C., Walker, G., Thielemans, W., et al.: Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J. Mater. Sci. 47, 2675–2686 (2012)CrossRefGoogle Scholar
  72. 72.
    Wang, D., Yu, J., Zhang, J., He, J., Zhang, J.: Transparent bionanocomposites with improved properties from poly (propylene carbonate) (PPC) and cellulose nanowhiskers (CNWs). Compos. Sci. Technol. 85, 83–89 (2013)CrossRefGoogle Scholar
  73. 73.
    Fortunati, E., D’Angelo, F., Martino, S., Orlacchio, A., Kenny, J.M., Armentano, I.: Carbon nanotubes and silver nanoparticles for multifunctional conductive biopolymer composites. Carbon 49, 2370–2379 (2011)CrossRefGoogle Scholar
  74. 74.
    Hapuarachchi, T.D., Peijs, T.: Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos. A Appl. Sci. Manuf. 41, 954–963 (2010)CrossRefGoogle Scholar
  75. 75.
    Sadegh-Hassani, F., Mohammadi Nafchi, A.: Preparation and characterization of bionanocomposites films based on potato starch/halloysite nanoclay. Int. J. Biol. Macromol. 67, pp. 458-462 (2014)Google Scholar
  76. 76.
    Ojijo, V., Ray, S.S.: Nano-biocomposites based on synthetic aliphatic polyesters and nanoclay. Prog. Mater. Sci. 62, 1–57 (2014)CrossRefGoogle Scholar
  77. 77.
    Nerantzaki, M., Papageorgiou, G.Z., Bikiaris D.N.: Effect of nanofiller’s type on the thermal properties and enzymatic degradation of poly(ε-caprolactone). Polym. Degrad. Stab. 108, 257–268 (2014)Google Scholar
  78. 78.
    Liu, X., Zou, Y., Li, W., Cao, G., Chen, W.: Kinetics of thermo-oxidative and thermal degradation of poly(d, l-lactide) (PDLLA) at processing temperature. Polym. Degrad. Stab. 91, 3259–3265 (2006)CrossRefGoogle Scholar
  79. 79.
    Hule, R.A., Pochan, D.J.: Polymer nanocomposites for biomedical applications. MRS Bull. 32, 354–358 (2007)CrossRefGoogle Scholar
  80. 80.
    Bharadwaj, R.K.: Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34, 9189–9192 (2001)CrossRefGoogle Scholar
  81. 81.
    Sorrentino, A., Gorrasi, G., Vittoria, V.: Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci. Technol. 18, 84–95 (2007)CrossRefGoogle Scholar
  82. 82.
    Emamifar, A., Kadivar, M., Shahedi, M., Soleimanian-Zad, S.: Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Sci. Emerg. Technol. 11, 742–748 (2010)CrossRefGoogle Scholar
  83. 83.
    Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., et al.: Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. Part A Chem. Anal. Control Exposure Risk Asses. 25, 241–258 (2008)CrossRefGoogle Scholar
  84. 84.
    Tiwari, A.: Frontiers in bio-nanocomposites. Advanced. Mater. Lett. 2, 377 (2011)CrossRefGoogle Scholar
  85. 85.
    Madhavan Nampoothiri, K., Nair, N.R., John, R.P.: An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 101, 8493–8501 (2010)CrossRefGoogle Scholar
  86. 86.
    Li, H.Y., Chang, C.M., Hsu, K.Y., Liu, Y.L.: Poly(lactide)-functionalized and Fe 3O 4 nanoparticle-decorated multiwalled carbon nanotubes for preparation of electrically-conductive and magnetic poly(lactide) films and electrospun nanofibers. J. Mater. Chem. 22, 4855–4860 (2012)CrossRefGoogle Scholar
  87. 87.
    Murariu, M., Bonnaud, L., Yoann, P., Fontaine, G., Bourbigot, S., Dubois, P.: New trends in polylactide (PLA)-based materials: “Green” PLA-Calcium sulfate (nano) composites tailored with flame retardant properties. Polym. Degrad. Stab. 95, 374–381 (2010)CrossRefGoogle Scholar
  88. 88.
    Cabedo, L., Feijoo, J.L., Villanueva, M.P., Lagarón, J.M., Giménez, E.: Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications. Macromol. Symp. 233, 191–197 (2006)CrossRefGoogle Scholar
  89. 89.
    ReportLinker. Packaging Industry: Market Research Reports, Statistics and Analysis. ReportLinker (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kieran A. Murray
    • 1
    • 2
    Email author
  • John A. Killion
    • 1
  • Ian Major
    • 1
  • Luke M. Geever
    • 1
  1. 1.Applied Polymer TechnologiesAthlone Institute of TechnologyAthloneIreland
  2. 2.Material Research InstituteAthlone Institute of TechnologyAthloneIreland

Personalised recommendations