Analysis for Thermal Degradation of a Polymer by Factor Analysis

  • Akifumi UdaEmail author
Part of the Engineering Materials book series (ENG.MAT.)


This chapter introduces an application of multivariate curve resolution (MCR) technique based on a factor analysis. Not only series of IR spectra but also two-dimensional data (series of nuclear magnetic resonance (NMR), mass spectrometry (MS), and X-ray diffraction (XRD)) can deal with same manner (further more two-dimensional data generated by hyphenated techniques such as gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/ultraviolet (LC/UV) analysis, which combine two functions based on different principles, namely, chromatography, which has a separating function, and spectrometry, which provides information related to molecular structure). By using MCR techniques appropriately, the mixture data is resolved into some essential elements (chemical components, transient states and phases). The results can reveal a true chemical characteristic in your study.


Thermal Degradation Amorphous Phase Polymer Backbone Polymer Phase Multivariate Curve Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kaiser, H.F.: Psychometrika 23 (1958)Google Scholar
  2. 2.
    Sylvestre, E.A., Lawton, W.H., Maggio, M.S.: Technometrics 16(3) (1974)Google Scholar
  3. 3.
    Gemperline, P.J.: J. Chem. Inf. Comput. Sci. 24 (1984)Google Scholar
  4. 4.
    Vandeginste B.G.M. et al.: J. Chemon. 1 (1987)Google Scholar
  5. 5.
    Windig, W., Guilement, J.: Anal. Chem. 63 (1991)Google Scholar
  6. 6.
    Kvalheim, O.M., Liang, Y.: Anal. Chem. 64, 936 (1992)CrossRefGoogle Scholar
  7. 7.
    Malinowski, E.R.: Factor Analysis in Chemistry, 3rd edn. Wiley, New York (2002)Google Scholar
  8. 8.
    Sanchez, F.C., Toft, J., van den Bogaert, B., Massart, D.L.: Anal. Chem. Chem. 68, 79–85 (1996)Google Scholar
  9. 9.
    Finch, C.A.: Polyvinyl Alcohol: Developments. Wiley, Chichester, West Sussex (1992)Google Scholar
  10. 10.
    Chiellini, E., Corti, A., D’Antone, S., Solaro, R.: Prog. Polym. Sci. 28, 963 (2003)CrossRefGoogle Scholar
  11. 11.
    Holland, B.J., Hay, J.N.: Polymer 42, 6775 (2001)CrossRefGoogle Scholar
  12. 12.
    Kenney, J.F., Willcockson, G.W.: J. Polym. Sci. 4, 679 (1966)CrossRefGoogle Scholar
  13. 13.
    Morita, S., Kitagawa, K., Noda, I., Ozaki, Y.: J. Mol. Struct. 30, 883 (2008)Google Scholar
  14. 14.
    Morita, S., Shinzawa, H., Noda, I., Ozaki, Y.: Appl. Spectrosc. 60, 398 (2006)CrossRefGoogle Scholar
  15. 15.
    Sanchez, F.C., Hancewicz, T., Vandeginste, B.G.M., Massart, D.L.: Anal. Chem. Chem. 69, 1477 (1997)Google Scholar
  16. 16.
    Vandeginste, B.G.M., Massart, D.L., Buydens, L.M.C., De Jong, S., Lewi, P.J., Smeyers-Verbeke, J.: Handbook of Chemometrics and Qualimetrics: Part B. Elsevier, Amsterdam (1998)Google Scholar
  17. 17.
    Uda, A., Morita, S., Ozaki, Y.: Polymer 54, 2130–2137 (2013)CrossRefGoogle Scholar
  18. 18.
    Sakurada, I., Nukushina, Y., Sone, Y.: J. Polym. Sci. 12, 506 (1955)Google Scholar
  19. 19.
    Kenney, J.F., Holland, V.F.: J. Polym. Sci. 4, 699 (1966)CrossRefGoogle Scholar
  20. 20.
    Fujii, K., Mochizuki, T., Imoto, S., Ukita, M., Matsumoto, M.: J. Polym. Sci. Part A: Polym. Chem. 2, 2327 (1964)Google Scholar
  21. 21.
    Murahashi, S., Nozakura, S., Washimi, M., Yuuki, H., Hata, S.: J. Polym. Sci. Part B: Polym. Phys. 4, 65 (1966)CrossRefGoogle Scholar
  22. 22.
    Gilbert, J.B., Kipling, J.J.: Fuel 12, 249–260 (1962)Google Scholar
  23. 23.
    Tsuchiya, Y., Sumi, K.: J. Polym. Sci. Part A: Plym. Chem. 7 (1969)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Advanced Technology Development LaboratoryMizushima R&D Center, Mitsubishi Chemical CorporationOkayamaJapan

Personalised recommendations