Advertisement

Effect of Thermo-oxidation on the Mechanical Performance of Polymer Based Composites for High Temperature Applications

  • Sumana GhoshEmail author
Chapter
  • 1.3k Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

In the present study the effect of thermo-oxidation on the mechanical properties of polymer based composites has been reported for high temperature applications. The polymer based composites with high thermal stability and future trend towards modification of this type of composites have been discussed here.

Keywords

Polymer composites Thermo-oxidation Mechanical properties 

Notes

Acknowledgments

The authors are grateful to Mr. K. Dasgupta, Director, CSIR–Central Glass and Ceramic Research Institute (CSIR–CGCRI), Kolkata–700 032, India, for his kind permission to publish this work.

References

  1. 1.
    Haque, M.H., Upadhyaya, P., Roy, S., Ware, T., Voit, W., Lu, H.: The changes in flexural properties and microstructures of carbon fiber bismaleimide composite after exposure to a high temperature. Compos. Struct. 108, 57–64 (2014)CrossRefGoogle Scholar
  2. 2.
    La Mantia, F.P., Morreale, M.: Green composites: a brief review. Compos. A 42, 579–588 (2011)CrossRefGoogle Scholar
  3. 3.
    Salavatian, M., Smith, L.: An improved analytical model for shear modulus of fiber reinforced laminates with damage. Compos. Sci. Technol. 105, 9–14 (2014)CrossRefGoogle Scholar
  4. 4.
    Yu, T., Jiang, N., Li, Y.: Functionalized multi-walled carbon nanotube for improving the flame retardancy of ramie/poly(lactic acid) composite. Compos. Sci. Technol. 104, 26–33 (2014)CrossRefGoogle Scholar
  5. 5.
    Srikanth, I., Padmavathi, N., Kumar, S., Ghosal, P., Kumar, A., Subrahmanyam, Ch.: Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites. Compos. Sci. Technol. 1–7 (2013)Google Scholar
  6. 6.
    Bell, J.M., Goh, R.G.S, Waclawik, E.R., Giulianini, M., Motta, N.: Polymer-carbon nanotube composites: basic science and applications. In: Cairney, J.M., Ringer, S.P., Wuhrer, R. (eds.) Materials Forum, vol. 32, pp. 144152 (2008)Google Scholar
  7. 7.
    Harle, S.M.: The performance of natural fiber reinforced polymer composites: review. Int. J. Civ. Eng. Res. 5, 285–288 (2014)Google Scholar
  8. 8.
    Lee, B.L., Holl, M.W.: Effects of moisture and thermal cycling on in-plane shear properties of graphite fibre-reinforced cyanate ester resin composites. Compos. A: Appl. Sci. Manuf. 27, 1015–1022 (1996)CrossRefGoogle Scholar
  9. 9.
    Doh, G.-H., Lee, S.-Y., Kang, I.-A., Kong, Y.-T.: Thermal behavior of liquefied wood polymer composites (LWPC). Compos. Struct. 68, 103–108 (2005)CrossRefGoogle Scholar
  10. 10.
    Hanu, L.G., Simon, G.P., Cheng, Y.-B.: Thermal stability and flammability of silicone polymer composites. Polym. Degrad. Stab. 91, 1373–1379 (2006)CrossRefGoogle Scholar
  11. 11.
    Elyashevich, G.K., Sidorovich, A.V., Smirnov, M.A., Kuryndin, I.S., Bobrova, N.V., Trchová, M., Stejskal, J.: Thermal and structural stability of composite systems based on polyaniline deposited on porous polyethylene films. Polym. Degrad. Stab. 91, 2786–2792 (2006)CrossRefGoogle Scholar
  12. 12.
    Xu, Y., Ray, G., Abdel-Magid, B.: Thermal behavior of single-walled carbon nanotube polymer–matrix composites. Compos. A: Appl. Sci. Manuf. 37, 114–121 (2006)CrossRefGoogle Scholar
  13. 13.
    Shebani, A.N., van Reenen, A.J., Meincken, M.: The effect of wood extractives on the thermal stability of different wood-LLDPE composites. Thermochim. Acta 481, 52–56 (2009)CrossRefGoogle Scholar
  14. 14.
    Cai, Y., Wei, Q., Huang, F., Lin, S., Chen, F., Gao, W.: Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites. Renew. Energy 34, 2117–2123 (2009)CrossRefGoogle Scholar
  15. 15.
    Liu, T.X., Huang, S.: Morphology and thermal behavior of polymer/carbon nanotube composites. Physical Properties and Applications of Polymer Nanocomposites, pp. 529–562. Woodhead Publishing, Cambridge (2010)Google Scholar
  16. 16.
    Su, S.P., Xu, Y.H., China, P.R., Wilkie, C.A.: Thermal degradation of polymer–carbon nanotube composites. Polymer–Carbon Nanotube Composites, pp. 482–510 (2011)Google Scholar
  17. 17.
    Chrissafis, D.B.: Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim. Acta 523, 1–24 (2011)CrossRefGoogle Scholar
  18. 18.
    Vadukumpully, S., Paul, J., Mahanta, N., Valiyaveettil, S.: Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49, 198–205 (2011)CrossRefGoogle Scholar
  19. 19.
    Sliwa, F., Bounia, N.E., Marin, G., Charrier, F., Malet, F.: A new generation of wood polymer composite with improved thermal stability. Polym. Degrad. Stab. 97, 496–503 (2012)CrossRefGoogle Scholar
  20. 20.
    Subramaniam, K., Das, A., Häußler, L., Harnisch, C., Stöckelhuber, K.W., Heinrich, G.: Enhanced thermal stability of polychloroprene rubber composites with ionic liquid modified MWCNTs. Polym. Degrad. Stab. 97, 776–785 (2012)CrossRefGoogle Scholar
  21. 21.
    Boon, M.S., Serena Saw, W.P., Mariatti, M.: Magnetic, dielectric and thermal stability of Ni–Zn ferrite-epoxy composite thin films for electronic applications. J. Magn. Magn. Mater. 324, 755–760 (2012)CrossRefGoogle Scholar
  22. 22.
    Ray, S.S.: Thermal stability and flammability of environmentally friendly polymer nanocomposites using biodegradable polymer matrices and clay/carbon nanotube (CNT) reinforcements. Environmentally Friendly Polymer Nanocomposites, pp. 295–327. Woodhead Publishing, Cambridge (2013)Google Scholar
  23. 23.
    Yang, D., Zhang, W., Yao, R., Jiang, B.: Thermal stability enhancement mechanism of poly(dimethylsiloxane) composite by incorporating octavinyl polyhedral oligomeric silsesquioxanes. Polym. Degrad. Stab. 98, 109–114 (2013)CrossRefGoogle Scholar
  24. 24.
    de Oliveira, M.C.L., Ett, G., Antunes, R.A.: Corrosion and thermal stability of multi-walled carbon nanotube-graphite-acrylonitrile-butadiene-styrene composite bipolar plates for polymer electrolyte membrane fuel cells. J. Power Sources 221, 345–355 (2013)CrossRefGoogle Scholar
  25. 25.
    Realinho, V., Haurie, L., Antunes, M., Velasco, J.I.: Thermal stability and fire behaviour of flame retardant high density rigid foams based on hydromagnesite-filled polypropylene composites. Compos. B Eng. 58, 553–558 (2014)CrossRefGoogle Scholar
  26. 26.
    Jiang, S., Gui, Z., Shi, Y., Zhou, K., Yuan, B., Bao, C., Lo, S., Hu, Y.: Bismuth subcarbonate nanoplates for thermal stability, fire retardancy and smoke suppression applications in polymers: a new strategy. Polym. Degrad. Stab. 107, 1–9 (2014)CrossRefGoogle Scholar
  27. 27.
    Lin, J., Zhang, P., Zheng, C., Wu, X., Mao, T., Zhu, M., Wang, H., Feng, D., Qian, S., Cai, X.: Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties. Appl. Surf. Sci. 316, 114–123 (2014)CrossRefGoogle Scholar
  28. 28.
    Panaitescu, D.M., Vuluga, Z., Ghiurea, M., Iorga, M., Nicolae, C., Gabor, R.: Influence of compatibilizing system on morphology, thermal and mechanical properties of high flow polypropylene reinforced with short hemp fibers. Compos. B Eng. 69, 286–295 (2015)CrossRefGoogle Scholar
  29. 29.
    Santos, T.F.A., Vasconcelos, G.C., de Souza, W.A., Costa, M.L., Botelho, E.C.: Suitability of carbon fiber-reinforced polymers as power cable cores: galvanic corrosion and thermal stability evaluation. Mater. Des. 65, 780–788 (2015)CrossRefGoogle Scholar
  30. 30.
    Fitaroni, L.B., de Lima, J.A., Cruz, S.A., Waldman, W.R.: Thermal stability of polypropylene–montmorillonite clay nanocomposites: limitation of the thermogravimetric analysis. Polym. Degrad. Stab. 111, 102–108 (2015)CrossRefGoogle Scholar
  31. 31.
    An, N., Tandon, G.P., Pochiraju, K.V.: Thermo-oxidative performance of metal-coated polymers and composites. Surf. Coat. Technol. 232, 166–172 (2013)CrossRefGoogle Scholar
  32. 32.
    Bian, L., Xiao, J., Zeng, J., Xing, S., Yin, C., Jia, A.: Effects of thermal treatment on the mechanical properties of poly(p-phenylene benzobisoxazole) fiber reinforced phenolic resin composite materials. Mater. Des. 230–235. Elsevier, Amsterdam (2014) Google Scholar
  33. 33.
    Minervino, M., Gigliotti, M., Lafarie-Frenot, M.C., Grandidier, J.C.: The effect of thermo-oxidation on the mechanical behaviour of polymer epoxy materials. Polym. Testing 32, 1020–1028 (2013)CrossRefGoogle Scholar
  34. 34.
    Upadhyaya, P., Roy, S., Haque, M.H., Lu, H.: Influence of nano-clay compounding on thermo-oxidative stability and mechanical properties of a thermoset polymer system. Compos. Sci. Technol. 84, 8–14 (2013)CrossRefGoogle Scholar
  35. 35.
    Vu, D.Q., Gigliotti, M., Lafarie-Frenot, M.C.: Experimental characterization of thermo-oxidation-induced shrinkage and damage in polymer–matrix composite. Compos. A: Appl. Sci. Manuf. 43, 577–586 (2012)CrossRefGoogle Scholar
  36. 36.
    Li, K., Wang, K., Zhan, M., Xu, W.: The change of thermal–mechanical properties and chemical structure of ambient cured DGEBA/TEPA under accelerated thermo-oxidative aging. Polym. Degrad. Stab. 98, 2340–2346 (2013)CrossRefGoogle Scholar
  37. 37.
    Vu, D.-Q., Gigliotti, M., Lafarie-Frenot, M.C.: The effect of thermo-oxidation on matrix cracking of cross-ply [0/90]S composite laminates. Compos. A: Appl. Sci. Manuf. 44, 114–121 (2013)CrossRefGoogle Scholar
  38. 38.
    Ammar-Khodja, I., Picard, C., Fois, M., Marais, C., Netchitaïlo, P.: Preliminary results on thermo-oxidative ageing of multi-hole carbon/epoxy composites. Compos. Sci. Technol. 69, 1427–1431 (2009)CrossRefGoogle Scholar
  39. 39.
    Li, W., Dichiara, A., Zha, J., Su, Z., Bai, J.: On improvement of mechanical and thermo-mechanical properties of glass fabric/epoxy composites by incorporating CNT–Al2O3 hybrids. Compos. Sci. Technol. 103, 36–43 (2014)CrossRefGoogle Scholar
  40. 40.
    Pochiraju, K., Tandon, G.P.: Interaction of oxidation and damage in high temperature polymeric matrix composites. Compos. A: Appl. Sci. Manuf. 40, 1931–1940 (2009)CrossRefGoogle Scholar
  41. 41.
    Gigliotti, M., Olivier, L., Vu, D.Q., Grandidier, J.-C., Lafarie-Frenot, M.C.: Local shrinkage and stress induced by thermo-oxidation in composite materials at high temperatures. J. Mech. Phys. Solids 59, 696–712 (2011)CrossRefGoogle Scholar
  42. 42.
    Rasselet, D., Ruellan, A., Guinault, A., Miquelard-Garnier, G., Sollogoub, C., Fayolle, B.: Oxidative degradation of polylactide (PLA) and its effects on physical and mechanical properties. Eur. Polymer J. 50, 109–116 (2014)CrossRefGoogle Scholar
  43. 43.
    Kim, J.A., Seong, D.G., Kang, T.J., Youn, J.R.: Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44, 1898–1905 (2006)CrossRefGoogle Scholar
  44. 44.
    Yan, N., Buonocore, G., Lavorgna, M., Kaciulis, S., Balijepalli, S.K., Zhan, Y., Xia, H., Ambrosio, L.: The role of reduced graphene oxide on chemical, mechanical and barrier properties of natural rubber composites. Compos. Sci. Technol. 102, 74–81 (2014)CrossRefGoogle Scholar
  45. 45.
    Yang, L., Thomason, J.L., Zhu, W.: The influence of thermo-oxidative degradation on the measured interface strength of glass fibre-polypropylene. Compos. A: Appl. Sci. Manuf. 42, 1293–1300 (2011)CrossRefGoogle Scholar
  46. 46.
    Dominkovics, Z., Hári, J., Fekete, E., Pukánszky, B.: Thermo-oxidative stability of polypropylene/layered silicate nanocomposites. Polym. Degrad. Stab. 96, 581–587 (2011)CrossRefGoogle Scholar
  47. 47.
    Bullions, T.A., McGrath, J.E., Loos, A.C.: Thermal-oxidative aging effects on the properties of a carbon fiber-reinforced phenylethynyl-terminated poly(etherimide). Compos. Sci. Technol. 63, 1737–1748 (2003)CrossRefGoogle Scholar
  48. 48.
    Huang, W., Zou, B., Zhao, Y., Meng, X., Wang, C., Cao, X., Wang, Z.: Fabrication of novel thermal barrier coating on polymer composites via the combined sol–gel/sealing treatment process. Appl. Surf. Sci. 258, 9058–9066 (2012)CrossRefGoogle Scholar
  49. 49.
    Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., Lee, J.H.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35, 1350–1375 (2010)CrossRefGoogle Scholar
  50. 50.
    Dueramae, I., Jubsilp, C., Takeichi, T., Rimdusit, S.: High thermal and mechanical properties enhancement obtained in highly filled polybenzoxazine nanocomposites with fumed silica. Compos. B Eng. 56, 197–206 (2014)CrossRefGoogle Scholar
  51. 51.
    Lopes, A.C., Martins, P., Lanceros-Mendez, S.: Aluminosilicate and aluminosilicate based polymer composites: present status, applications and future trends. Prog. Surf. Sci. 89, 239–277 (2014)CrossRefGoogle Scholar
  52. 52.
    Karger-Kocsis, J., Bárány, T.: Single-polymer composites (SPCs): status and future trends. Compos. Sci. Technol. 92, 77–94 (2014)CrossRefGoogle Scholar
  53. 53.
    Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015)CrossRefGoogle Scholar
  54. 54.
    Lee, K.-Y., Aitomäki, Y., Berglund, L.A., Oksman, K., Bismarck, A.: On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci. Technol. 105, 15–27 (2014)CrossRefGoogle Scholar
  55. 55.
    Kumar, A.P., Depan, D., Tomer, N.S., Singh, R.P.: Nanoscale particles for polymer degradation and stabilization—trends and future perspectives. Prog. Polym. Sci. 34, 479–515 (2009)CrossRefGoogle Scholar
  56. 56.
    Zandén, C., Luo, X., Ye, L., Liu, J.: A new solder matrix nano polymer composite for thermal management applications. Compos. Sci. Technol. 94, 54–61 (2014)CrossRefGoogle Scholar
  57. 57.
    Lee, K.-Y., Bismarck, A.: Creating hierarchical structures in cellulosic fibre reinforced polymer composites for advanced performance. Natural Fibre Composites, pp. 84–102. Woodhead Publishing, Cambridge (2014)Google Scholar
  58. 58.
    Yuan, B., Bao, C., Song, L., Hong, N., Liew, K.M., Hu, Y.: Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem. Eng. J. 237, 411–420 (2014)CrossRefGoogle Scholar
  59. 59.
    Xu, S., Girouard, N., Schueneman, G., Shofner, M. L., Meredith, J.C.: Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer 54, 6589–6598 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Bio-ceramics and Coating DivisionCSIR–Central Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations