Advertisement

Thermal Degradation of Thermosetting Blends

  • Dan RosuEmail author
  • Cristian-Dragos Varganici
  • Liliana Rosu
  • Oana Maria Mocanu (Paduraru)
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

The chapter coalesces literature studies on recent advances concerning the thermal behavior of different thermosetting blends. The introduction debates the general issue concerning polymer blends, that being the occurrence of phase separation phenomena and lists a series of possibilities to overcome these undesired aspects. The introduction section also presents the most common polymers used as crosslinked scaffolds either individual or for different multicomponent polymeric materials. The subchapters that follow are focused on recent studies on the thermal stability and degradation of thermosetting blends, effect of reinforcement and nanofillers on the thermal stability of thermosetting blends and applications and future trends of thermosetting blends, dealing with the latest issues and trying to reveal solutions.

Keywords

Natural Rubber Char Yield Interpenetrate Polymer Network Unsaturated Polyester Neat Epoxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors of this chapter acknowledge a grant of the Romanian National Authority for Scientific Research, CNCS—UEFISCDI, project number PN-II-ID-PCE-2011-3-0187.

References

  1. 1.
    Utracki, L.A.: In: Utracki, L.A. (ed.) Polymer Blends Handbook, vol. 1. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  2. 2.
    Thomas, R., Vijayan, P., Thomas, S.: Recycling of thermosetting polymers. In: Fainleib, A., Grigoryeva, O. (eds.) Recent Developments in Polymer Recycling, pp. 122–129. Transworld Research Network, Kerala (2011)Google Scholar
  3. 3.
    Irfan, M.H.: Chemistry and Technology of Thermosetting Polymers in Construction Applications, pp. 78–96, 230–239. Springer Science and Business Media, Dodrecht (1998)Google Scholar
  4. 4.
    Skiest, I.: Handbook of Adhesives, 2nd edn, pp. 12–17. Litton Educational Publishing, New York (1977)Google Scholar
  5. 5.
    Benson, L.M.: Polymer Blends: A Comprehensive Review, pp. 65–108. Carl Hanser Verlag, Munich (2007)Google Scholar
  6. 6.
    Rosu, D., Rosu, L., Varganici, C.-D.: The thermal stability of some semi-interpenetrated polymer networks based on epoxy resin and aromatic polyurethane. J. Anal. Appl. Pyrol. 100, 103–110 (2013)Google Scholar
  7. 7.
    Varganici, C.-D., Rosu, L., Rosu, D., Simionescu, B.C.: Miscibility studies of some semi-interpenetrating polymer networks based on an aromatic polyurethane and epoxy resin. Compos. B Eng. 50, 273–278 (2013)Google Scholar
  8. 8.
    Fox, T.G.: Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull. Am. Phys. Soc. 1, 123 (1956)Google Scholar
  9. 9.
    Gordon, M., Taylor, J.: Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J. Appl. Chem. 2, 493–500 (1952)Google Scholar
  10. 10.
    Cristea, M., Ibanescu, S., Cascaval, C.N., Rosu, D.: Dynamic mechanic analysis of polyurethane-epoxy interpenetrating polymer networks. High Perform. Polym. 21, 608–621 (2009)Google Scholar
  11. 11.
    Rosu, D., Tudorachi, N., Rosu, L.: Investigations on the thermal degradation of a MDI based polyurethane elastomer. J. Anal. Appl. Pyrol. 89, 152–158 (2010)Google Scholar
  12. 12.
    Rosu, D., Rosu, L., Brebu, M.: Thermal stability of silver sulfathiazole-epoxy resin network. J. Anal. Appl. Pyrol. 92, 10–18 (2011)Google Scholar
  13. 13.
    Friedman, H.L.: Kinetic of thermal degradation of char forming plastics from thermogravimetry-application of phenolic plastics. J. Polym. Sci. C6, 183–195 (1965)Google Scholar
  14. 14.
    Ozawa, T.: A new method of analysing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1866–1881 (1965)Google Scholar
  15. 15.
    Opferman, J.: Kinetic analysis using multivariate non-linear regression. J. Therm. Anal. Calorim. 60, 641–658 (2000)Google Scholar
  16. 16.
    Galwey, A.K., Brown, M.E.: Kinetic background to thermal analysis and calorimetry. In: Brown, M.E. (ed.) Handbook of Thermal Analysis and Calorimetry, pp. 169–171. Elsevier, Amsterdam (1998)Google Scholar
  17. 17.
    Denq, B.L., Chin, W.Y., Lin, K.F.: Kinetic model of thermal degradation of polymers from nonisothermal process. J. Appl. Polym. Sci. 66, 1855–1867 (1997)Google Scholar
  18. 18.
    Tiptipakorn, S., Damrongsakkul, S., Ando, S., Hemvichian, K., Rimdusit, S.: Thermal degradation behaviours of polybenzoxazine and silicone polyimide blends. Polym. Degrad. Stab. 92, 1265–1278 (2007)Google Scholar
  19. 19.
    Rosu, D., Rosu, L., Mustata, F., Varganici, C.-D.: Effect of UV radiation on some semi-interpenetrating polymer networks basedon polyurethane and epoxy resin. Polym. Degrad. Stab. 97, 1261–1269 (2012)Google Scholar
  20. 20.
    Shojaei, A., Faghihi, M.: Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend. Mater. Sci. Eng. A 527, 917–926 (2010)Google Scholar
  21. 21.
    Varshney, A., Mathur, R.M., Prajapati, K.: Thermal characteristics of oxazolidone modified epoxy anhydride blends. Int. J. Chem. 4(3), 113–120 (2012)Google Scholar
  22. 22.
    Knop, A., Scheib, W.: Chemistry and Application of Phenolic Resin. Springer, New York (1979)Google Scholar
  23. 23.
    Gardziella, A., Knop, A., Pilato, L.A.: Phenolic Resins: Chemistry, Applications, Standardization, Safety and Ecology, 2nd edn. Springer, Germany (2000)Google Scholar
  24. 24.
    Wolfgang, H.: ‘Phenolic Resins’ in Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim (2002)Google Scholar
  25. 25.
    Wang, H., Yan, Y., Yu, Y., Zhao, T., Zhi, L.: Synthesis of novolac/layered silicate nanocomposites by reaction exfoliation using acid-modified montmorillonite. Macromol. Rapid Commun. 23, 44–48 (2002)Google Scholar
  26. 26.
    Bandyopadhyay, D., Chakrabarty, D., Mandal, P.K., Goswami, S.: Novolac resin-poly(ethyl methacrylate) interpenetrating polymer networks: morphology and mechanical and thermal properties. J. Appl. Polym. Sci. 90, 412–420 (2003)Google Scholar
  27. 27.
    Goswami, S., Nad, S., Chakrabarty, D.: Modification of novolac resin by interpenetrating network formation with poly(butyl acrylate). J. Appl. Polym. Sci. 97, 2407–2417 (2005)Google Scholar
  28. 28.
    Goswami, S., Kiran, K.: Application of Kissinger analysis to glass transition and study of thermal degradation kinetics of phenolic-acrylic IPNs. Bull. Mater. Sci. 35(4), 657–664 (2012)Google Scholar
  29. 29.
    Goswami, S., Chakrabarty, D.: Synthesis and characterization of sequential interpenetrating polymer networks of novolac resin and poly(ethyl acrylate). J. Appl. Polym. Sci. 99, 2857–2867 (2006)Google Scholar
  30. 30.
    Honmute, S., Ganachari, S.V., Bhat, R., Naveen, H.M.P., Kumar, D.S., Venkatarman, H.A.: Studies on polyaniline-polyvinyl alcohol (PANI-PVA) interpenetrating polymer network (IPN) thin films. Int. J. Sci. Res. 1(2), 102–106 (2012)Google Scholar
  31. 31.
    Garg, P., Singh, R.P., Choudhary, V.: Selective polydimethylsiloxane/polyimide blended IPN pervaporation membrane for methanol/toluene azeotrope separation. Sep. Purif. Technol. 76, 407–418 (2011)Google Scholar
  32. 32.
    Pielichowski, K., Janowski, B.: Semi-interpenetrating polymer networks of polyurethane and poly(vinyl alcohol). Thermal stability assessment. J. Therm. Anal. Calorim. 80, 147–151 (2005)Google Scholar
  33. 33.
    Vieira, E.F.S., Cestari, A.R., Zawadzki, S.F., Rocha, S.M.: Evaluation of tg data of htpb-based polyurethanes. J. Therm. Anal. Calorim. 75(2), 501–506 (2004)Google Scholar
  34. 34.
    Starnes Jr., W.H.: Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride). Progr. Polym. Sci. 27, 2133–2170 (2002)Google Scholar
  35. 35.
    Merlin, L.M., Sivasankar, B.: Synthesis and characterization of semi-interpenetrating polymer networks using biocompatible polyurethane and acrylamide monomer. Eur. Polym. J. 45, 165–170 (2009)Google Scholar
  36. 36.
    Mathew, A.P., Packirisamy, S., Thomas, S.: Studies on the thermal stability of natural rubber/polystyrene interpenetrating polymer networks: thermogravimetric analysis. Polym. Degrad. Stab. 72, 423–439 (2001)Google Scholar
  37. 37.
    Boonpoo-nga, R., Sriring, M., Nijpanich, S., Wongbuth, L., Martwiset, S.: Semi-interpenetrating polymer networks of poly(4-styrenesulfonic acid) and poly(acrylic acid) for fuel cell applications. KKU Res. J. 16(7), 757–763 (2011)Google Scholar
  38. 38.
    Huang, C.-C., Yang, M.-S., Liang, M.: Synthesis of new thermosetting poly(2,6-dimethyl-1,4-phenylene oxide)s containing epoxide pendant groups. J. Polym. Sci. A Polym. Chem. 44, 5875–5886 (2006)Google Scholar
  39. 39.
    Takayama, S., Mathubara, T., Arai, T., Takedo, K.: Rearrangement of the main-chain and subsequent thermal degradation of polyphenylene-ether. Polym. Degrad. Stab. 50(3), 277–284 (1995)Google Scholar
  40. 40.
    Pearce, E.M., Liepins, R.: Flame retardants. Environ. Health Perspect. 11, 59–70 (1975)Google Scholar
  41. 41.
    Alamri, H., Low, I.M., Alothman, Z.: Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites. Compos. B Eng. 43, 2762–2771 (2012)Google Scholar
  42. 42.
    Shih, Y.F.: Mechanical and thermal properties of waste water bamboo husk fiber reinforced epoxy composites. Mater. Sci. Eng. A 445–446, 289–295 (2007)Google Scholar
  43. 43.
    De Rosa, I.M., Santulli, C., Sarasini, F.: Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Mater. Des. 31, 2397–2405 (2010)Google Scholar
  44. 44.
    Azwa, Z.N., Yousif, B.F.: Characteristics of kenaf/epoxy composites subjected to thermal degradation. Polym. Degrad. Stab. 98, 2752–2759 (2013)Google Scholar
  45. 45.
    Manfredi, L.B., Rodríguez, E.S., Przybylak, M.W., Vázquez, A.: Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym. Degrad. Stab. 91, 255–261 (2006)Google Scholar
  46. 46.
    Xu, S., Girouard, N., Schueneman, G., Shofner, M.L., Meredith, J.C.: Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer 54, 6589–6598 (2013)Google Scholar
  47. 47.
    Singha, A.S., Rana, A.K., Jarial, R.K.: Mechanical, dielectric and thermal properties of Grewia optiva fibers reinforced unsaturated polyester matrix based composites. Mater. Des. 51, 924–934 (2013)Google Scholar
  48. 48.
    Hameed, N., Sreekumar, P.A., Francis, B., Yang, W., Thomas, S.: Morphology, dynamic mechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites. Compos. A Appl. Sci. Manuf. 38, 2422–2432 (2007)Google Scholar
  49. 49.
    Alonso, M.V., Auad, M.L., Nutt, S.: Short-fiber-reinforced epoxy foams. Compos. A Appl. Sci. Manuf. 37, 1952–1960 (2006)Google Scholar
  50. 50.
    Daoa, D.Q., Luche, J., Richard, F., Rogaume, T., Bourhy-Weber, C., Ruban, S.: Determination of characteristic parameters for the thermal decomposition of epoxy resin/carbon fibre composites in cone calorimeter. Int. J. Hydrogen Energy 38, 8167–8178 (2013)Google Scholar
  51. 51.
    Régnier, N., Fontaine, S.: Determination of the thermal degradation kinetic parameters of carbon fibre reinforced epoxy using TG. J. Therm. Anal. Calorim. 64, 789–799 (2001)Google Scholar
  52. 52.
    Pervin, F., Zhou, Y., Rangari, V.K., Jeelani, S.: Testing and evaluation on the thermal and mechanical properties of carbon nano fiber reinforced SC-15 epoxy. Mater. Sci. Eng. A 405, 246–253 (2005)Google Scholar
  53. 53.
    Seki, Y., Sever, K., Sarikanat, M., Sakarya, A., Elik, E.: Effect of huntite mineral on mechanical, thermal and morphological properties of polyester matrix. Compos. B Eng. 45, 1534–1540 (2013)Google Scholar
  54. 54.
    Sun, Y., Zhang, Z., Moon, K.S., Wong, C.P.: Glass transition and relaxation behavior of epoxy nanocomposites. J. Polym. Sci. B Polym. Phys. 42, 3849–3858 (2004)Google Scholar
  55. 55.
    Bikiaris, D.: Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermochim. Acta 523, 25–45 (2011)Google Scholar
  56. 56.
    Preghenella, M., Pegoretti, A., Migliaresi, C.: Thermo-mechanical characterization of fumed silica-epoxy nanocomposites. Polymer 46, 12065–12072 (2005)Google Scholar
  57. 57.
    Lakshmi, M.S., Narmadha, B., Reddy, B.S.R.: Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials. Polym. Degrad. Stab. 93, 20125–45213 (2008)Google Scholar
  58. 58.
    Saad, G.R., Elhamid, E.E.A., Elmenyawy, S.A.: Dynamic cure kinetics and thermal degradation of brominated epoxy resin-organoclay based nanocomposites. Thermochim. Acta 524, 186–193 (2011)Google Scholar
  59. 59.
    Narteh, A.T., Hosur, M., Triggs, E., Jeelani, S.: Thermal stability and degradation of diglycidyl ether of bisphenol A epoxy modified with different nanoclays exposed to UV radiation. Polym. Degrad. Stab. 98, 759–770 (2013)Google Scholar
  60. 60.
    Brnardic, I., Macan, J., Ivankovic, H., Ivankovic, M.: Thermal degradation kinetics of epoxy/organically modified montmorillonite nanocomposites. J. Appl. Polym. Sci. 107, 1932–1938 (2008)Google Scholar
  61. 61.
    Carrasco, F., Pages, P.: Thermal degradation and stability of epoxy nanocomposites: influence of montmorillonite content and cure temperature. Polym. Degrad. Stab. 93, 1000–1007 (2008)Google Scholar
  62. 62.
    Jiang, W., Chen, S.H., Chen, Y.: Nanocomposites from phenolic resin and various organo-modified montmorillonites: preparation and thermal stability. J. Appl. Polym. Sci. 102, 5336–5343 (2006)Google Scholar
  63. 63.
    Pranger, L.A., Nunnery, G.A., Tannenbaum, R.: Mechanism of the nanoparticle-catalyzed polymerization of furfuryl alcohol and the thermal and mechanical properties of the resulting nanocomposites. Compos. B Eng. 43, 1139–1146 (2012)Google Scholar
  64. 64.
    Zhang, Z., Ye, G., Toghiani, H., Pittman Jr, C.U.: Morphology and thermal stability of novolac phenolic resin/clay nanocomposites prepared via solution high-shear mixing. Macromol. Mater. Eng. 295, 923–933 (2010)Google Scholar
  65. 65.
    Ingram, S.E., Liggat, J.J., Pethrick, R.A.: Properties of epoxy nanoclay system based on diaminodiphenyl sulfone and diglycidyl ether of bisphenol F: influence of post cure and structure of amine and epoxy. Polym. Int. 56, 1029–1034 (2007)Google Scholar
  66. 66.
    Park, J., Jana, S.C.: Adverse effects of thermal dissociation of alkyl ammonium ions on nanoclay exfoliation in epoxy-clay systems. Polymer 45, 7673–7679 (2004)Google Scholar
  67. 67.
    Arasa, M., Pethrick, R.A., Mantecón, A., Serra, A.: New thermosetting nanocomposites prepared from diglycidyl ether of bisphenol and γ-valerolactone initiated by rare earth triflate initiators. Eur. Polym. J. 46, 5–13 (2010)Google Scholar
  68. 68.
    Chongqing, Y., Shunping, L., Jianying, Y., Yong, N., Congcong, F., Hua, W., Yufeng, C.: Preparation and thermal properties of phenolic resin/organic expanded vermiculite nanocomposites. Adv. Chem. Lett. 1, 51–55 (2013)Google Scholar
  69. 69.
    Nohales, A., Solar, L., Porcar, I., Vallo, C.I., Gómez, C.M.: Morphology, flexural, and thermal properties of sepiolite modified epoxy resins with different curing agents. Eur. Polym. J. 42, 3093–3101 (2006)Google Scholar
  70. 70.
    Zhang, Y., Shen, J., Li, Q., Pang, L., Zhang, Q., Xu, Z., Yeung, K.W.K., Yi, C.: Synthesis and characterization of novel hyperbranched polyimides/attapulgite nanocomposites. Compos. A Appl. Sci. Manuf. 55, 161–168 (2013)Google Scholar
  71. 71.
    Ollier, R., Rodriguez, E., Alvarez, V.: Unsaturated polyester/bentonite nanocomposites: influence of clay modification on final performance. Compos. A Appl. Sci. Manuf. 48, 137–143 (2013)Google Scholar
  72. 72.
    Zabihi, O., Ghasemlou, S.: Nano-CuO/epoxy composites: thermal characterization and thermo-oxidative degradation. Int. J. Polym. Anal. Charact. 17, 108–121 (2012)Google Scholar
  73. 73.
    Guo, Z., Liang, X., Pereira, T., Scaffaro, R., Hahn, H.T.: CuO nanoparticle filled vinyl-ester resin nanocomposites: fabrication, characterization and property analysis. Compos. Sci. Technol. 67, 2036–2044 (2007)Google Scholar
  74. 74.
    Guo, Z., Lei, K., Li, Y., Ng, H.W., Prikhodko, S., Hahn, H.T.: Fabrication and characterization of iron oxide nanoparticles reinforced vinyl-ester resin nanocomposites. Compos. Sci. Technol. 68, 1513–1520 (2008)Google Scholar
  75. 75.
    Zabihi, O., Hooshafza, A., Moztarzadeh, F., Payravand, H., Afshar, A., Alizadeh, R.: Isothermal curing behavior and thermo-physical properties of epoxy-based thermoset nanocomposites reinforced with Fe2O3 nanoparticles. Thermochim. Acta 527, 190–198 (2012)Google Scholar
  76. 76.
    Asiri, A.M., Hussein, M.A., Abu-Zied, B.M., Hermas, A.E.A.: Effect of NiLaxFe2-xO4 nanoparticles on the thermal and coating properties of epoxy resin composites. Compos. B Eng. 51, 11–18 (2013)Google Scholar
  77. 77.
    Chatterjee, A., Islam, M.S.: Fabrication and characterization of TiO2–epoxy nanocomposite. Mater. Sci. Eng. A 487, 574–585 (2008)Google Scholar
  78. 78.
    Omrani, A., Afsar, S., Safarpour, M.A.: Thermoset nanocomposites using hybrid nano TiO2–SiO2. Mater. Chem. Phys. 122, 343–349 (2010)Google Scholar
  79. 79.
    Guigo, N., Mija, A., Zavaglia, R., Vincent, L., Sbirrazzuoli, N.: New insights on the thermal degradation pathways of neat poly(furfuryl alcohol) and poly(furfuryl alcohol)/SiO2 hybrid materials. Polym. Degrad. Stab. 94, 908–913 (2009)Google Scholar
  80. 80.
    Schutz, M.R., Sattler, K., Deeken, S., Klein, O., Adasch, V., Liebscher, C.H., Glatzel, U., Senker, J., Breu, J.: Improvement of thermal and mechanical properties of a phenolic resin nanocomposite by in situ formation of silsesquioxanes from a molecular precursor. J. Appl. Polym. Sci. 117, 2272–2277 (2010)Google Scholar
  81. 81.
    Nagendiran, S., Alagar, M., Hamerton, I.: Octasilsesquioxane-reinforced DGEBA and TGDDM epoxy nanocomposites: Characterization of thermal, dielectric and morphological properties. Acta Mater. 58, 3345–3356 (2010)Google Scholar
  82. 82.
    Wang, Y., Liu, F., Xue, X.: Synthesis and characterization of UV-cured epoxy acrylate/POSS nanocomposites. Prog. Org. Coat. 76, 863–869 (2013)Google Scholar
  83. 83.
    Zhang, Y., Lee, S., Yoonessi, M., Liang, K., Pittman, C.U.: Phenolic resin-trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites: structure and properties. Polymer 47, 2984–2996 (2006)Google Scholar
  84. 84.
    Aflori, M., Simionescu, B., Bordianu, I.-E., Sacarescu, L., Varganici, C.-D., Doroftei, F., Nicolescu, A., Olaru, M.: Silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones. Mater. Sci. Eng. B Solid–State Mater. Adv. Technol. 178(19), 1339–1346 (2013)Google Scholar
  85. 85.
    Bazzar, M., Ghaemy, M.: 1,2,4-Triazole and quinoxaline based polyimide reinforced with neat and epoxide-end capped modified SiC nanoparticles: Study thermal, mechanical and photophysical properties. Compos. Sci. Technol. 86, 101–108 (2013)Google Scholar
  86. 86.
    Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K.: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. A Appl. Sci. Manuf. 41, 1345–1367 (2010)Google Scholar
  87. 87.
    Zhou, Y., Pervin, F., Lewis, L., Jeelani, S.: Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Mater. Sci. Eng. A 452453, 657–664 (2007)Google Scholar
  88. 88.
    Ma, P.C., Kim, J.K., Tang, B.Z.: Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos. Sci. Technol. 67, 2965–2972 (2007)Google Scholar
  89. 89.
    Ciecierska, E., Boczkowska, A., Kurzydlowski, K.J., Rosca, I.D., Hoa, S.V.: The effect of carbon nanotubes on epoxy matrix nanocomposites. J. Therm. Anal. Calorim. 111, 1019–1024 (2013)Google Scholar
  90. 90.
    Loosa, M.R., Coelhoa, L.A.F., Pezzina, S.H., Amicob, S.C.: Effect of carbon nanotubes addition on the mechanical and thermal properties of epoxy matrices. Mater. Res. 11, 347–352 (2008)Google Scholar
  91. 91.
    Yang, K., Gu, M.: The Effects of triethylenetetramine grafting of multi-walled carbon nanotubes on its dispersion, filler-matrix interfacial interaction and the thermal properties of epoxy nanocomposites. Polym. Eng. Sci. 49, 2158–2167 (2009)Google Scholar
  92. 92.
    Kuan, C.F., Chen, W.J., Li, Y.L., Chen, C.H., Kuan, H.C., Chiang, C.L.: Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol–gel method. J. Phys. Chem. Sol. 71, 539–543 (2010)Google Scholar
  93. 93.
    Han, C., Gu, A., Liang, G., Yuan, L.: Carbon nanotubes/cyanate ester composites with low percolation threshold, high dielectric constant and outstanding thermal property. Compos. A Appl. Sci. Manuf. 41, 1321–1328 (2010)Google Scholar
  94. 94.
    Cui, J., Yan, Y., Liu, J., Wu, Q.: Phenolic resin-MWNT nanocomposites prepared through an in situ polymerization method. Polym. J. 40, 1067–1073 (2008)Google Scholar
  95. 95.
    Liu, L., Ye, Z.: Effects of modified multi-walled carbon nanotubes on the curing behavior and thermal stability of boron phenolic resin. Polym. Degrad. Stab. 94, 1972–1978 (2009)Google Scholar
  96. 96.
    Bafekrpour, E., Simon, G.P., Naebe, M., Habsuda, J., Yang, C., Fox, B.: Preparation and properties of composition-controlled carbon nanofiber/phenolic nanocomposites. Compos. B Eng. 52, 120–126 (2013)Google Scholar
  97. 97.
    Faraz, M.I., Bhowmik, S., De Ruijter, C., Laoutid, F., Benedictus, R., Dubois, Ph, Page, J.V.S., Jeson, S.: Thermal, morphological, and mechanical characterization of novel carbon nanofiber-filled bismaleimide composites. J. Appl. Polym. Sci. 117, 2159–2167 (2010)Google Scholar
  98. 98.
    Potts, J.R., Dreyer, D.R., Bielawski, C.W., Ruoff, R.S.: Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011)Google Scholar
  99. 99.
    Zhang, X., Alloul, O., He, Q., Zhu, J., Verde, M.J., Li, Y., Wei, S., Guo, Z.: Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphene nanosheets. Polymer 54, 3594–3604 (2013)Google Scholar
  100. 100.
    Wang, X., Jin, J., Song, M.: An investigation of the mechanism of graphene toughening epoxy. Carbon 65, 324–333 (2013)Google Scholar
  101. 101.
    Li, Y., Pan, D., Chen, S., Wang, Q., Pan, G., Wang, T.: In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater. Des. 47, 850–856 (2013)Google Scholar
  102. 102.
    Lin, Q., Qu, L., Lü, Q., Fang, C.: Preparation and properties of graphene oxide nanosheets/cyanate ester resin composites. Polym. Test. 32, 330–337 (2013)Google Scholar
  103. 103.
    Lungu, A., Florea, N.M., Iovu, H.: Dimethacrylic/epoxy interpenetrating polymer networks including octafunctional POSS. Polymer 53, 300–307 (2012)Google Scholar
  104. 104.
    Jia, Q.M., Zheng, M.S., Chen, H.X., Shen, R.J.: Morphologies and properties of polyurethane/epoxy resin interpenetrating network nanocomposites modified with organoclay. Mater. Lett. 60, 1306–1309 (2006)Google Scholar
  105. 105.
    Chen, S., Wang, Q., Wang, T., Pei, X.: Preparation, damping and thermal properties of potassium titanate whiskers filled castor oil-based polyurethane/epoxy interpenetrating polymer network composites. Mater. Des. 32, 803–807 (2011)Google Scholar
  106. 106.
    Chen, S., Wang, Q., Wang, T.: Damping, thermal, and mechanical properties of carbon nanotubes modified castor oil-based polyurethane/epoxy interpenetrating polymer network composites. Mater. Des. 38, 47–52 (2012)Google Scholar
  107. 107.
    Wu, X., He, G., Gu, S., Hu, Z., Yao, P.: Novel interpenetrating polymer network sulfonated poly(phthalazinone ether sulfone ketone)/polyacrylic acid proton exchange membranes for fuel cell. J. Membr. Sci. 295, 80–87 (2007)Google Scholar
  108. 108.
    Banerjee, S., Ray, S., Maiti, S., Sen, K.K., Bhattacharyya, U.K., Kaity, S., Ghosh, A.: Interpenetrating polymer network (IPN): a novel biomaterial. Int. J. Appl. Pharm. 2(1), 28–34 (2010)Google Scholar
  109. 109.
    Patel, J.M., Savani, H.D., Turakhiya, J.M., Akbari, B.V., Goyani, M., Raj, H.A.: Interpenetrating polymer network: a novel approach for controlled drug delivery. UJP 1(1), 1–11 (2012)Google Scholar
  110. 110.
    Shivashankar, M., Mandal, B.K.: A review on interpenetrating polymer network. Int. J. Phram. Phram. Sci. 4(5), 1–7 (2012)Google Scholar
  111. 111.
    Paduraru, O.M., Ciolacu, D., Darie, R.N., Vasile, C.: Synthesis and characterization of polyvinyl alcohol/cellulose cryogels and their testing as carriers for a bioactive component. Mater. Sci. Eng. C 32, 2508–2515 (2012)Google Scholar
  112. 112.
    Varganici, C.-D., Paduraru, O.M., Rosu, L., Rosu, D., Simionescu, B.C.: Thermal stability of some cryogels based on poly(vinyl alcohol) and cellulose. J. Anal. Appl. Pyrol. 104, 77–83 (2013)Google Scholar
  113. 113.
    Gibson, S.L., Walls, H.J., Kennedy, S.B., Welsh, E.R.: Reaction kinetics and gel properties of blocked diisocyanate crosslinked chitosan hydrogels. Carbohydr. Polym. 54, 193–199 (2003)Google Scholar
  114. 114.
    Zeng, M., Fang, Z., Xu, C.: Effect of compatibility on the structure of the microporous membrane prepared by selective dissolution of chitosan/synthetic polymer blend membrane. J. Membr. Sci. 230, 175–181 (2004)Google Scholar
  115. 115.
    Zeng, M., Fang, Z.: Preparation of sub-micrometer porous membrane from chitosan/polyethylene glycol semi-IPN. J. Membr. Sci. 245, 95–102 (2004)Google Scholar
  116. 116.
    Welsh, E.R., Schauer, C.L., Qadri, S.B., Price, R.R.: Chitosan crosslinking with a water-soluble, blocked diisocyanate. 1. Solid state. Biomacromolecules 3, 1370–1374 (2002)Google Scholar
  117. 117.
    Rodkate, N., Wichai, U., Boontha, B., Rutnakornpituk, M.: Semi-interpenetrating polymer network hydrogels between polydimethylsiloxane/polyethylene glycol and chitosan. Carbohydr. Polym. 81, 617–625 (2010)Google Scholar
  118. 118.
    Dinu, M.V., Cazacu, M., Dragan, E.S.: Mechanical, thermal and surface properties of polyacrylamide/dextran semi-interpenetrating network hydrogels tuned by the synthesis temperature. Cent. Eur. J. Chem. 11(2), 248–258 (2013)Google Scholar
  119. 119.
    Grishchuk, S., Karger-Kocsis, J.: Hybrid thermosets from vinyl ester resin and acrylated epoxidized soybean oil (AESO). Express Polym. Lett. 5(1), 2–11 (2011)Google Scholar
  120. 120.
    Wang, R., Schuman, T.P.: Vegetable oil-derived epoxy monomers and polymer blends: a comparative study with review. Express Polym. Lett. 7(3), 272–292 (2013)Google Scholar
  121. 121.
    Mustata, F., Tudorachi, N., Rosu, D.: Curing and thermal behavior of resin matrix for composites based on epoxidized soybean oil/diglycidyl ether of bisphenol A. Compos. B Eng. 42, 1803–1812 (2011)Google Scholar
  122. 122.
    Harrats, C., Mekhilef, N.: Cocontinuous phase morphologies: predictions, generation and practical applications. In: Harrats, C., Thomas, S., Groeninckx, G. (eds.) Micro- and Nanostructured Multiphase Polymer Blend Systems: Phase Morphology and Interfaces, p. 124. Taylor & Francis Group, USA (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Dan Rosu
    • 1
    Email author
  • Cristian-Dragos Varganici
    • 1
  • Liliana Rosu
    • 1
  • Oana Maria Mocanu (Paduraru)
    • 1
  1. 1.Centre of Advanced Research in Bionanoconjugates and Biopolymers“Petru Poni” Institute of Macromolecular ChemistryIasiRomania

Personalised recommendations