Advertisement

Thermal Degradation of Polymer Blends, Composites and Nanocomposites

  • P. M. VisakhEmail author
  • Olga B. Nazarenko
Chapter
  • 1.4k Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

This chapter deals with a brief account of thermal degradation of polymer-based blends, composites and nanocomposites. Different synthesising, preparation and characterisation methods of thermal degradation of polymer-based blends, composites and nanocomposites are discussed. Finally the applications, new challenges and opportunities for these thermal degradation of polymer-based blends, composites and nanocomposites are discussed.

Keywords

Thermal Degradation Layered Double Hydroxide Phase Change Material Expand Graphite Cellulose Nanocrystals 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Thomas, R., Vijayan, P., Thomas, S.: Recycling of thermosetting polymers. In: Fainleib, A., Grigoryeva, O. (eds.) Recent developments in polymer recycling, pp. 122–129. Transworld Research Network, Kerala (2011)Google Scholar
  2. 2.
    Irfan, M.H.: Chemistry and Technology of Thermosetting Polymers in Construction Applications, pp. 78–96, 230–239. Springer Science and Business Media, Dodrecht (1998)Google Scholar
  3. 3.
    Shojaei, A., Faghihi, M.: Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend. Mat. Sci. Eng. A. 527, 917–926 (2010)CrossRefGoogle Scholar
  4. 4.
    Honmute, S., Ganachari, S.V., Bhat, R., Naveen Kumar, H.M.P., Huh, D.S., Venkatarman, A.: Studies on polyaniline-polyvinyl alcohol (PANI-PVA) interpenetrating polymer network (IPN) thin films. Int. J. Sci. Res. 1(2), 102–106 (2012)Google Scholar
  5. 5.
    Merlin, L.M., Sivasankar, B.: Synthesis and characterization of semi-interpenetrating polymer networks using biocompatible polyurethane and acrylamide monomer. Eur. Polym. J. 45, 165–170 (2009)CrossRefGoogle Scholar
  6. 6.
    Alamri, H., Low, I.M., Alothman, Z.: Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites. Compos. B Eng. 43, 2762–2771 (2012)CrossRefGoogle Scholar
  7. 7.
    Xu, S., Girouard, N., Schueneman, G., Shofner, M.L., Meredith, J.C.: Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polym. 54, 6589–6598 (2013)CrossRefGoogle Scholar
  8. 8.
    Hameed, N., Sreekumar, P.A., Francis, B., Yang, W., Thomas, S.: Morphology, dynamic mechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites. Compos. A Appl. Sci. Manuf. 38, 2422–2432 (2007)CrossRefGoogle Scholar
  9. 9.
    Pandey, J.K., Reddy, K.R., Kumar, A.P., Singh, R.P.: An overview on the degradability of polymer nanocomposites. Polym. Degrad. Stab. 88, 234 (2005)CrossRefGoogle Scholar
  10. 10.
    Ollier, R., Rodriguez, E., Alvarez, V.: Unsaturated polyester/bentonite nanocomposites: influence of clay modification on final performance. Compos. A Appl. Sci. Manuf. 48, 137–143 (2013)Google Scholar
  11. 11.
    Carrasco, F., Pagès, P.: Thermal degradation and stability of epoxy nanocomposites: influence of montmorillonite content and cure temperature. Polym. Degrad. Stab. 93, 1000 (2008)CrossRefGoogle Scholar
  12. 12.
    Lakshmi, M.S., Narmadha, B., Reddy, B.S.R.: Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials. Polym. Degrad. Stab. 93, 20125–45213 (2008)Google Scholar
  13. 13.
    Saitoh, K., Ohashi, K., Oyama, T., Takahashi, A., Kadota, J., Hirano, H.: Development of high-performance epoxy/clay nanocomposites by incorporating novel phosphonium modified montmorillonite. J. Appl. Polym. Sci. 122, 666 (2011)Google Scholar
  14. 14.
    Chrissafis, D.B.: Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim. Acta 523, 1–24 (2011)Google Scholar
  15. 15.
    Sahoo, N.G., Rana, S., Cho, J.W., Li, L., Chan, S.H.: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837 (2010)Google Scholar
  16. 16.
    Segev, O., Kushmaro, A., Brenner, A.: Environmental impact of flame retardants (persistence and biodegradability). Int. J. Environ. Res. Public Health 6, 478–491 (2009)CrossRefGoogle Scholar
  17. 17.
    Murphy, J.: Modifying specific properties: flammability-flame retardants. In: Additives for Plastics, Handbooks, pp. 115–140. Elsevier Science Ltd., New York (2001)Google Scholar
  18. 18.
    Kumara, A.P., Depana, D., Tomerb, N.S., Singha, R.P.: Nanoscale particles for polymer degradation and stabilization—Trends and future perspectives. Prog. Polym. Sci. 34, 479–515 (2009)CrossRefGoogle Scholar
  19. 19.
    Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.-M., Dubois, Ph: New prospects in flameretardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. R. 63(3), 100–125 (2009)CrossRefGoogle Scholar
  20. 20.
    Zhang, J., Ji, Q., Zhang, P., Xia, Y., Kong, Q.: Thermal stability and flame-retardancy mechanism of poly(ethyleneterephthalate)/boehmitena nocomposites. Polym. Degrad. Stab. 95, 1211–1218 (2010)CrossRefGoogle Scholar
  21. 21.
    Ke, Y.C., Wu, T.B., Xia, Y.F.: The nucleation, crystallization and dispersion behavior of PET with monodisperse SiO2 composites. Polymer 11, 3324–3336 (2007)CrossRefGoogle Scholar
  22. 22.
    Ilyin, A.P., Nazarenko, O.B., Tikhonov, D.V., et al.: Hydroxide and oxide ultra fine powders—effective retardant additives in polymers. In: Abstract 10th Branch Meeting Problems and development prospects of the Tomsk Petrochemical Complex, Tomsk, Russia, p. 37 (1996) (In Russian)Google Scholar
  23. 23.
    Gromov, A.A., Nazarenko, O.B., Tikhonov, D.V., Iljin, A.P., Pautova, Y.I.: Electroex plosive Nanometals. In: Gromov, A., Teipel, U. (eds.) Metal Nanopowders Production, Characterization, and Energetic Applications, pp. 67–78. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2014)CrossRefGoogle Scholar
  24. 24.
    Kwon, Y.-S., Kim, J.-C., Ilyin, A.P., Nazarenko, O.B., Tikhonov, D.V.: Electroexplosive technology of nano powders production: current status and future prospect. J. Korean Powder Metall. Inst. 19(1), 40–48 (2012)CrossRefGoogle Scholar
  25. 25.
    Nazarenko, O.B., Amelkovich, Y.A., Ilyin, A.P., Sechin, A.I.: Prospects of using nanopowders as flame retardant additives. Adv. Mater. Res. 872, 123–127 (2014)CrossRefGoogle Scholar
  26. 26.
    Haque, M.H., Upadhyaya, P., Roy, S., Ware, T., Voit, W., Lu, H.: The changes in flexural properties and microstructures of carbon fiber bismaleimide composite after exposure to a high temperature. Compos. Struct. 108, 57–64 (2014)CrossRefGoogle Scholar
  27. 27.
    La Mantia, F.P., Morreale, M.: Green composites: a brief review. Compos. A 42, 579–588 (2011)CrossRefGoogle Scholar
  28. 28.
    Salavatian, M., Smith, L.: An improved analytical model for shear modulus of fiber reinforced laminates with damage. Compos. Sci. Technol. 105, 9–14 (2014)CrossRefGoogle Scholar
  29. 29.
    Yu, T., Jiang, N., Li, Y.: Functionalized multi-walled carbon nanotube for improving the flame retardancy of ramie/poly(lactic acid) composite. Compos. Sci. Technol. 104, 26–33 (2014)CrossRefGoogle Scholar
  30. 30.
    Srikanth, I., Padmavathi, N., Kumar, S., Ghosal, P., Kumar, A., Subrahmanyam, Ch.: Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites. Compos. Sci. Technol. 80, 1–7 (2013)CrossRefGoogle Scholar
  31. 31.
    Harle, S.M.: The performance of natural fiber reinforced polymer composites: review. Int. J. Civil. Eng. Res. 5, 285–288 (2014)Google Scholar
  32. 32.
    Hanu, L.G., Simon, G.P., Cheng, Y.-B.: Thermal stability and flammability of silicone polymer composites. Polym. Degrad. Stab. 91, 1373–1379 (2006)CrossRefGoogle Scholar
  33. 33.
    Cai, Y., Wei, Q., Huang, F., Lin, S., Chen, F., Gao, W.: Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites. Renewable Energy 34, 2117–2123 (2009)CrossRefGoogle Scholar
  34. 34.
    Chrissafis, D.B.: Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta 523, 1–24 (2011)Google Scholar
  35. 35.
    Vadukumpully, S., Paul, J., Mahanta, N., Valiyaveettil, S.: Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49, 198–205 (2011)CrossRefGoogle Scholar
  36. 36.
    Lin, J., Zhang, P., Zheng, C., Wu, X., Mao, T., Zhu, M., Wang, H., Feng, D., Qian, S., Cai, X.: Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties. Appl. Surf. Sci. 316, 114–123 (2014)CrossRefGoogle Scholar
  37. 37.
    Santos, T.F.A., Vasconcelos, G.C., de Souza, W.A., Costa, M.L., Botelho, E.C.: Suitability of carbon fiber-reinforced polymers as power cable cores: galvanic corrosion and thermal stability evaluation. Mater. Des. 65, 780–788 (2015)CrossRefGoogle Scholar
  38. 38.
    Bian, L., Xiao, J., Zeng, J., Xing, S., Yin, C., Jia, A.: Effects of thermal treatment on the mechanical properties of poly(p-phenylenebenzobisoxazole) fiber reinforced phenolic resin composite materials. Mater. Des. 54, 230–235 (2014)Google Scholar
  39. 39.
    Kim, J.A., Seong, D.G., Kang, T.J., Youn, J.R.: Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44, 1898–1905 (2006)CrossRefGoogle Scholar
  40. 40.
    Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015)CrossRefGoogle Scholar
  41. 41.
    Xu, S., Girouard, N., Schueneman, G., Shofner, M.L., Carson Meredith, J.: Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer 54, 6589−6598 (2013)Google Scholar
  42. 42.
    Kaiser, H.F.: The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187−200 (1958)Google Scholar
  43. 43.
    Sylvestre, E.A., Lawton, W.H., Maggio, M.S.: Curve resolution using a postulated chemical reaction. Technometrics 16(3), 353−368 (1974)Google Scholar
  44. 44.
    Malinowski, E.R.: Factor Analysis in Chemistry, 3rd edn. Wiley, New York (2002)Google Scholar
  45. 45.
    Sanchez, F.C., Toft, J., van den Bogaert, B. and Massart, D.L.: Orthogonal projection approach applied to peak purity assessment. Anal. Chem. Chem. 68, 79 (1996)Google Scholar
  46. 46.
    Chapiro, A.: Radiation Chemistry of Polymer Materials. Wiley Interscience Publishers, New York (1962)Google Scholar
  47. 47.
    Clough, R.L.: Radiation-resistant polymers. In: Encyclopedia of Polymer Science and Engineering, 2nd edn. pp. 667–708. Wiley, New York (1988)Google Scholar
  48. 48.
    Bhattacharya, A.: Radiation and industrial polymers. Prog. Polym. Sci. 25, 371–401 (2000)CrossRefGoogle Scholar
  49. 49.
    Clegg, D.W., Collyer, A.A. (eds.): Irradiation Effects on Polymers. Elsevier Applied Science, London (1999)Google Scholar
  50. 50.
    Woods, R.J.: Applied Radiation Chemistry: Radiation Processing. Wiley Interscience Publishers, New York (1994)Google Scholar
  51. 51.
    Clough, R. L.: High-energy radiation and polymers. A review of commercial processes and emerging applications. Nucl. Instrum. Methods Phys. Res. B. 185, pp. 8–33 (2001)Google Scholar
  52. 52.
    Spinks, J.W.T., Woods, R.J. (eds.): Introduction to Radiation Chemistry, 3rd edn. Wiley, New York (1990)Google Scholar
  53. 53.
    Dawes, K., Glover, L.C., Vroom, D.A.: The effects of electron beam and γ-irradiation on polymer materials. In: Mark, J.E. (ed.) Physical Properties of Polymer. Handbook, 2nd edn. Springer, New York (2007)Google Scholar
  54. 54.
    Makuuchi, K., Chang, S. (eds.): Radiation Processing of Polymer Materials and its Industrial Applications. Wiley, New York (2012)Google Scholar
  55. 55.
    Zaharescu, T., Jipa S.: Radiochemical modifications in polymers. In: Arndt, K.F., Lechner, M.D. (eds.), Landolt-Börnstein Series, Polymer Solids and Polymer Melts, vol. VIII/6 C2, pp. 95–184. Springer, Heidelberg (2013)Google Scholar
  56. 56.
    Drobny, J.G.: Ionizing radiation and polymers: principles, technology, and applications. PDL Handbook Series, Elsevier (2012)Google Scholar
  57. 57.
    Cleland, M.R., Park, L.A., Chang, S.: Applications for radiation processes of material. Nucl. Instrum. Meth. Phys. Res. B 208, 66–73 (2003)Google Scholar
  58. 58.
    Gehring, J.: With radiation crosslinking of polyolefin engineering plastics into the next millennium. Radiat. Phys. Chem. 57, 361–365 (2000)CrossRefGoogle Scholar
  59. 59.
    Nablo, S.V., Chrusciel, J., Cleghorn, D.A., Rangwalla, I.: Factors influencing equipment selection in electron beam processing. Nucl. Instrum. Meth. Phys. Res. B 208, 90–101 (2003)Google Scholar
  60. 60.
    Miller, A.: Approval and control of radiation processing, EB and gamma. Radiat. Phys. Chem. 31, 385–393 (1988)Google Scholar
  61. 61.
    Cleland M.R., Park L.A.: Medium and high-energy electron beam radiation processing for commercial applications. Nucl. Instrum. Meth. Phys. Res. B 208, 74–89 (2003)Google Scholar
  62. 62.
    Saylor, M.C., Parks, L.A., Herring, C.H.: Technical and regulatory for radiation sterilization facilities using electron beam accelerators. Nucl. Instrum. Meth. Phys. Res. B 79, 875–878 (1993)Google Scholar
  63. 63.
    Pilette, L.: Effects of ionizing treatments on packaging—food simulant combinations. Packag. Technol. Sci. 3, 17–20 (1990)CrossRefGoogle Scholar
  64. 64.
    Zimek, Z., Przybytniak, G., Nowicki, A., Mirkowski, K., Roman, K.: Optimization of electron beam crosslinking for cables. Radiat. Phys. Chem. 94, 161–165 (2014)Google Scholar
  65. 65.
    Bartoníček, B., Plaček, V., Hnát, V.: Comparison of degradation effects induced by gamma radiation and electron beam radiation in two cable jacketing materials. Radiat. Phys. Chem. 76, 857–863 (2007)CrossRefGoogle Scholar
  66. 66.
    Voit, W., Ware, T., Gall, K.: Radiation crosslinked shape-memory polymers. Polymer 51, 3551–3559 (2010)CrossRefGoogle Scholar
  67. 67.
    Banik, I., Bhowmick, A.K.: Effect of electron beam irradiation on the properties of crosslinked rubbers. Radiat. Phys. Chem. 58, 293–298 (2000)CrossRefGoogle Scholar
  68. 68.
    Haque, M.E., Dafader, N.C., Akhtar, F., Ahmad, M.U.: Radiation dose required for the vulcanization of narural rubber latex. Radiat. Phys. Chem. 48, 505–510 (1996)CrossRefGoogle Scholar
  69. 69.
    Kurtz, S.M., Muratoglu, O.K., Evans, M., Edidin, A.A.: Advances in the processing, sterilization and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplast. Biomaterials 20, 1659–1688 (1999)CrossRefGoogle Scholar
  70. 70.
    Rezanejad, S., Kokab, M.: Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur. Polym. J. 43, 2856–2865 (2007)CrossRefGoogle Scholar
  71. 71.
    Mahapram, S., Poompradub, S.: Preparation of natural rubber (NB) latex/low density polyethylene (LDPE) blown film and its properties. Polym. Test. 30, 716–725 (2011)CrossRefGoogle Scholar
  72. 72.
    Chattopadhyay, S., Chaki, T.K., Bhowmick, A.K.: Heat shrinkability of electron-beam-modified thermoplastic elastomeric films from blemds of ethylene vinylacetate copolymer and polyethylene. Radiat. Phys. Chem. 59, 501–505 (2000)CrossRefGoogle Scholar
  73. 73.
    Zhu, G., Liang, G., Xu, Q., Yu, Q.: Shape-memory effects of radiation crosslinked poly(ε-caprolactone). J. Appl. Polym. Sci. 90, 1589–1595 (2003)CrossRefGoogle Scholar
  74. 74.
    Mohamed, R.M.: Radiation induced modification of NBR and SBR montmorillonite nanocomposites. J. Ind. Eng. Chem. 19, 80–86 (2013)CrossRefGoogle Scholar
  75. 75.
    Crăciun, E., Jitaru, I., Zaharescu, T., Jipa, S.: Qualification of epoxy resin by radiochemical ageing. Optoelectr. Adv. Mater. Rapid Commun. 4, 1819–1822 (2010)Google Scholar
  76. 76.
    Thomas, J.K.: Fundamental aspects of the radiolysis of solid polymers, crosslinking and degradation. Nucl. Instrum. Meth. Phys. Res. B 265, 1–7 (2007)Google Scholar
  77. 77.
    Rosiak, J.M., Ulanski, I.P., Pajewski, L.A., Yoshii, F., Makuuchi, K.: Radiation formation of hydrogel for biomedical purposes. Some remarks and comments. Radiat. Phys. Chem. 46, 161–168 (1995)CrossRefGoogle Scholar
  78. 78.
    Żenkiewicz, M., Dzwonkowski, J.: Effects of electron radiation and compatibilizers on impact strength of composites of recycled polymers. Polym. Test. 26, 903–907 (2007)CrossRefGoogle Scholar
  79. 79.
    Zhang, Y., Liu, Q., Xiang, J., Frost, R.L.: Thermal stability and decomposition kinetics of styrene-butadiene rubber nanocomposites filled with different particles sized kaolinites. Appl. Clay Sci. 95, 159–166 (2014)Google Scholar
  80. 80.
    Xiong, X., Wang, J., Jia, H., Fang, E., Ding, L.: Structure, thermal conductivity, and thermal stability of bromobutyl rubber nanocomposites with ionic liquid modified graphene oxide. Polym. Degrad. Stab. 98, 2208–2214 (2013)CrossRefGoogle Scholar
  81. 81.
    Ganter, M., Gronski, W., Semke, H., Zilg, T., Thomann, R., Mülhaupt, R.: Surface-compatibilized layered silicates—A novel class of nanofillers for rubbers with improved mechanical properties. Kautsch. Gummi Kunstst. 54(4), 166–171 (2001)Google Scholar
  82. 82.
    Pramanik, M., Srivastava, S.K., Samantaray, B.K., Bhowmick, A.K.: Rubber-Clay nanocomposite by solution blending. J. Appl. Polym. Sci. 87, 2216–2220 (2003)Google Scholar
  83. 83.
    Lim, S.K., Lim, S.T., Kim, H.B., Chin, I., Choi, H.J.: Preparation and physical characterization of polyepichlorohydrin elastomer/clay nanocomposites. J. Macromol. Sci. Part B Phys. B 42(6), 1197–1199 (2003)CrossRefGoogle Scholar
  84. 84.
    Wu, C.M., Hwang, W.G., Tien, K.C., Chang, Y.C., Fu, H.L.: In: 11th National Conference on Science and Technology of National Defense, Taipei, Taiwan (2003)Google Scholar
  85. 85.
    Jeon, H.S., Rameshwaram, J.K., Kim, G.: Structure-property relationships in exfoliated polyisoprene/clay nanocomposites. J. Polym. Sci. Part B Polym. Phys. 42, 1000–1009 (2004)CrossRefGoogle Scholar
  86. 86.
    Peeterbroeck, S., Lepoittevin, B., Pollet, E., Benali, S., Broekaert, C., Alexandre, M., Bonduel, D., Viville, P., Lazzaroni, R., Dubois, P.: Polymer layered silicate/carbon nanotube nanocomposites: The catalyzed polymerization approach. Polym. Eng. Sci. 46, 1022–1030 (2006)CrossRefGoogle Scholar
  87. 87.
    Malas, A., Pal, P., Das, Ch.K.: Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends. Mater. Des. 55, 664−673 (2014)Google Scholar
  88. 88.
    Cabello, Ch., Saénz, A., López, L.I., Pérez, C., Barajas, L., Ávila, C.: Modificación superficial de (MWCNT) con H2SO4/HNO3 mediante ultrasonido. Afinidad 68, 370–374 (2012)Google Scholar
  89. 89.
    Cerin, O., Fontaine, G., Duquesne, S., Bourbigot, S.: Thermal stability of synthetic rubber nanocomposites. In: Mittal, V. (ed.) Recent Advance in Elastomeric Nanocomposites. Springer, Heidelberg (2011)Google Scholar
  90. 90.
    Scotti, R., Conzatti, L., D’Arienzo, M., Di Credico, B., Giannini, L., Hanel, T., Stagnaro, P., Susanna, A., Tadiello, L., Morazzoni, F.: Shape controlled spherical (0D) and rod-like (1D) silica nanoparticles in silica/styrene butadiene rubber nanocomposites: role of the particle morphology on the filler reinforcing effect. Polymer 55, 1497–1506 (2014)CrossRefGoogle Scholar
  91. 91.
    Dhere, N.G., Gadre, K.S.: Comparison of mechanical properties of EVA encapsulant in new and field-deployed PV modules. In: Proceedings of the 2nd World Photovoltaic Solar Energy Conference and Exhibition, Vienna, Austria, 6–10 July 1998Google Scholar
  92. 92.
    Dechthummarong, C., Wiengmoon, B., Chenvidhya, D., Jivacate, C., Kirtikara, K.: Physical deterioration of encapsulation and electrical insulation properties of PV modules after long-term operation in Thailand. Sol. Energy Mater. Sol. Cells 94(9), 1437–1440 (2010)Google Scholar
  93. 93.
    ASTMD1435–05: Standard Practice for Outdoor Weathering of Plastics. ASTMD, Philadelphia (1985)Google Scholar
  94. 94.
    Stark, W., Jaunich, M.: Investigation of Ethylene Vinyl Acetate copolymer (EVA) by thermal analysis DSC and DMA. Polym. Test. 30(2), 236–242 (2011)Google Scholar
  95. 95.
    Oreski, G., Wallner, G.M.: Damp heat induced physical aging of PV encapsulation materials. In: 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Itherm 2010), pp. 1−6. Las Vegas, NV, 2–5 June 2010Google Scholar
  96. 96.
    Collins, G., Yoo, S.U., Recber, A., Jaffe, M.: Thermal analysis of complex relaxation processes in Poly(Desaminotyrosyl-Tyrosine Arylates). Polymer 48(4), 975–988 (2007)Google Scholar
  97. 97.
    Saffell, J.R., Matthiesen, A., McIntyre, R., Ibar, J.P.: Comparing thermal stimulated current (TSC) with other thermal analytical methods to characterize the amorphous phase of polymers. Thermochim Acta 192, 243–264 (1991)Google Scholar
  98. 98.
    Kümmerer, K.: Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chem. 9, 899–907 (2007)CrossRefGoogle Scholar
  99. 99.
    Clarinval, A.M., Halleux, J.: Classification of biodegradable polymers, pp. 3–31. CRC Press, Boca Raton (2005)Google Scholar
  100. 100.
    Rhim, J.W., Park, H.M., Ha, C.S.: Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 38, 1629–1652 (2013)CrossRefGoogle Scholar
  101. 101.
    Kumar, A.P., Depan, D., Singh Tomer, N., Singh, R.P.: Nanoscale particles for polymer degradation and stabilization-trends and future perspectives. Prog. Polym. Sci. (Oxford). 34, 479–515 (2009)Google Scholar
  102. 102.
    Raquez, J.M., Habibi, Y., Murariu, M., Dubois, P.: Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 38, 1504–1542 (2013)CrossRefGoogle Scholar
  103. 103.
    Sinha Ray, S., Bousmina, M.: Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog. Mater. Sci. 50, 962–1079 (2005)Google Scholar
  104. 104.
    Bikiaris, D.: Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermochim. Acta 523, 25–45 (2011)CrossRefGoogle Scholar
  105. 105.
    Yang, K.K., Wang, X.L., Wang, Y.Z.: Progress in Nanocomposite of Biodegradable Polymer. J Ind Eng Chem. 13, 485–500 (2007)Google Scholar
  106. 106.
    Mohanty, A.K., Wibowo, A., Misra, M., Drzal, L.T.: Development of renewable resource–based cellulose acetate bioplastic: Effect of process engineering on the performance of cellulosic plastics. Polym. Eng. Sci. 43, 1151–1161 (2003)CrossRefGoogle Scholar
  107. 107.
    Ray, S.S., Bousmina, M.: Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog. Mater Sci. 50, 962–1079 (2005)CrossRefGoogle Scholar
  108. 108.
    Bandyopadhyay, S, Chen, R, Giannelis, E.P.: Biodegradable organic-inorganic hybrids based on poly(L-lactide). Polym. Mater. Sci. Eng. 81, 159−160 (1999)Google Scholar
  109. 109.
    Pluta, M., Galeski, A., Alexandre, M., Paul, M.A., Dubois, P.: Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: Structure and some physical properties. J. Appl. Polym. Sci. 86, 1497–1506 (2002)CrossRefGoogle Scholar
  110. 110.
    Chen, C.X., Yoon, J.S.: Morphology and thermal properties of poly(L -lactide)/poly (butylene succinate-co-butylene adipate) compounded with twice functionalized clay. J. Polym. Sci. Part B Polym. Phys. 43, 478–487 (2005)CrossRefGoogle Scholar
  111. 111.
    Marras, S.I., Zuburtikudis, I., Panayiotou, C.: Nanostructure vs. microstructure: Morphological and thermomechanical characterization of poly(l-lactic acid)/layered silicate hybrids. Eur. Polymer J. 43, 2191–2206 (2007)CrossRefGoogle Scholar
  112. 112.
    Bafna, A., Beaucage, G., Mirabella, F., Mehta, S.: 3D Hierarchical orientation in polymer–clay nanocomposite films. Polymer 44, 1103–1115 (2003)CrossRefGoogle Scholar
  113. 113.
    Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O.O., Maspoch, M.L.: Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 95, 116–125 (2010)CrossRefGoogle Scholar
  114. 114.
    de Paula, E.L., Mano, V., Pereira, F.V.: Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly(d, l-lactide). Polym. Degrad. Stab. 96, 1631–1638 (2011)CrossRefGoogle Scholar
  115. 115.
    Hossain, K.Z., Ahmed, I., Parsons, A., Scotchford, C., Walker, G., Thielemans, W., et al.: Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J. Mater. Sci. 47, 2675–2686 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Ecology and Basic SafetyTomsk Polytechnic UniversityTomskRussia

Personalised recommendations