Skip to main content

Cardiovascular System

  • Chapter
  • First Online:
Synopsis of Pathophysiology in Nuclear Medicine
  • 912 Accesses

Abstract

The heart consists of muscle, valves, specialized tissue, coronary arteries, and pericardium. In the embryo, during the first month of gestation, a primitive straight cardiac tube is formed. The tube comprises the sinoatrium, the bulbus cordis, and the truncus arteriosus. In the second month of gestation, this tube doubles over on itself to form two parallel pumping systems, each with two chambers and a great artery. The two atria develop from the sinoatrium; the right and left ventricles develop from the bulbus cordis. Differential growth of myocardial cells causes the straight cardiac tube to bear to the right, and the ventricular portion of the tube doubles over on itself, bringing the ventricles side by side (Fig. 8.1) [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parmley WW, Wikman-Coffelt J (1991) Physiology of cardiac muscle contraction. In: Parmley WW, Chatterjee K (eds) Cardiology. Lippincott, Philadelphia, pp 1–26

    Google Scholar 

  2. Parmley WW (1991) Ventricular function. In: Parmley WW, Chatterjee K (eds) Cardiology. Lippincott, Philadelphia, pp 1–20

    Google Scholar 

  3. Hall WD Jr, Gravanis MB (1991) Cardiac hypertrophy and hypertensive heart disease. In: Parmley WW, Chatterjee K (eds) Cardiology. Lippincott, Philadelphia, pp 118–138

    Google Scholar 

  4. Izumo S, Nadal-Ginard B, Mahvadi V (1988) Proto-oncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci U S A 85:339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Levy D, Garrison RJ, Savage DD et al (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham study. N Engl J Med 322:1561

    Article  CAS  PubMed  Google Scholar 

  6. Harrison DG, Florentine MS, Brooks LA et al (1988) The effect of hypertension and left ventricular hypertrophy on the lower range of coronary autoregulation. Circulation 77:1108

    Article  CAS  PubMed  Google Scholar 

  7. Smith V-E, Schulman P, Karimeddini MK et al (1985) Rapid ventricular filling left ventricular hypertrophy. II. Pathologic hypertrophy. J Am Coll Cardiol 5:869

    Article  CAS  PubMed  Google Scholar 

  8. Topol EJ, Traill TA, Fortuin NJ (1985) Hypertensive hypertrophic cardiomyopathy of the elderly. N Engl J Med 312:277

    Article  CAS  PubMed  Google Scholar 

  9. Conrad GH, Brooks WW, Robinson KG et al (1987) Impaired myocardial function in the spontaneously hypertensive rate with heart failure. J Mol Cell Cardiol 19(Suppl 4):565

    Google Scholar 

  10. McLenachan JM, Dargie HJ (1990) Ventricular arrhythmia in hypertensive left ventricular hypertrophy: relationship to coronary artery disease, left ventricular dysfunction, and myocardial fibrosis. Am J Hypertens 3:735

    CAS  PubMed  Google Scholar 

  11. Franch RH, Gravanis MB (1993) Pulmonary hypertension and core pulmonale. In: Gravanis M (ed) Cardiovascular disorders: pathogenesis and pathophysiology. Mosby, St Louis, pp 139–177

    Google Scholar 

  12. Haworth SG (1987) Pulmonary vascular disease in ventricular septal defect: structural and functional correlations in lung biopsies from 85 patients with outcome of intracardiac repair. J Pathol 152:157–168

    Article  CAS  PubMed  Google Scholar 

  13. Sharma GV, McIntyre KM, Sharma S et al (1984) Clinical and hemodynamic correlates in pulmonary embolism. Clin Chest Med 5(421):37

    Google Scholar 

  14. Palevsky HI, Weiss DW (1990) Pulmonary hypertension secondary to chronic thromboembolism. J Nucl Med 31:1–9

    CAS  PubMed  Google Scholar 

  15. Fishman AP (1988) Pulmonary hypertension and cor pulmonale. In: Fishman AP (ed) Pulmonary diseases and disorders, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  16. Berger HJ, Matthay RA, Lake J et al (1978) Assessment of cardiac performance with quantitative radionuclide angiocardiography: right ventricular ejection fraction with reference to findings in chronic obstructive pulmonary disease. Am J Cardiol 41:897–905

    Article  CAS  PubMed  Google Scholar 

  17. Grossman W (1991) Diastolic dysfunction in congestive heart failure. N Engl J Med 325:1557–1567

    Article  CAS  PubMed  Google Scholar 

  18. Boudoulas H, Gravanis MG (1991) Valvular heart disease. In: Parmley WW, Chatterjee K (eds) Cardiology. Lippincott, Philadelphia, pp 64–117

    Google Scholar 

  19. Oakley CM, Gravanis MB, Ansari AA (1993) Cardiomyopathies. In: Gravanis M (ed) Cardiovascular disorders: pathogenesis and pathophysiology. Mosby, St Louis, pp 210–253

    Google Scholar 

  20. Corbett JR, Akinboboye OO, Bacharach SL, Borer JS, Botvinick EH et al (2006) Quality Assurance Committee of the American Society of Nuclear Cardiology. Equilibrium radionuclide angiocardiography. J Nucl Cardiol 13:e56–e79

    Article  PubMed  Google Scholar 

  21. Akinboboye O, Nicholes K, Wang Y, Dim UR, Reichek N (2005) Accuracy of radionuclide ventriculography assessed by magnetic resonance imaging in patients with abnormal left ventricles. J Nucl Cardiol 12:418–427

    Article  PubMed  Google Scholar 

  22. Heiba SI, Cerqueira MD (1994) Evaluation of cardiac function. In: Cerqueira MD (ed) Nuclear cardiology. Blackwell Scientific, Cambridge, pp 53–117

    Google Scholar 

  23. Berger HJ, Zaret BL (1984) Radionuclide assessment of cardiovascular performance. In: Freeman L (ed) Freeman and Johnson’s clinical radionuclide imaging. Saunders, Philadelphia

    Google Scholar 

  24. Teerlink JR, Goldhaber SZ, Pfeffer MA (1991) An overview of contemporary etiologies of congestive heart failure. Am Heart J 121:1852–1853

    Article  CAS  PubMed  Google Scholar 

  25. Nichols KJ, Van Tosh A, Wang Y, Palestro CJ, Reichek N (2009) Validation of gated blood-pool SPECT regional left ventricular function measurements. J Nucl Med 50:53–60

    Article  PubMed  Google Scholar 

  26. Daou D, Coaguila C, Benada A (2006) Comparison of interstudy reproducibility of equilibrium electrocardiography-gated SPECT radionuclide angiography versus planar radionuclide angiography for the quantification of global left ventricular function. J Nucl Cardiol 13:233–243

    Article  PubMed  Google Scholar 

  27. Schwartz RG, McKenzie WB, Alexander J et al (1987) Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy: seven-year experience using serial radionuclide angiocardiography. Am J Med 82:1109–1118

    Article  CAS  PubMed  Google Scholar 

  28. Druck MN, Gulenchyn KY, Evans WK et al (1984) Radionuclide angiography and endomyocardial biopsy in the assessment of doxorubicin cardiotoxicity. Cancer 53:1667–1674

    Article  CAS  PubMed  Google Scholar 

  29. Kazmers A, Moneta GL, Cerqueira MD, Healy DA, Zierler RE, Harley JD (1990) The role of preoperative radionuclide ventriculography in defining outcome after revascularization of the extremity. Surg Gynecol Obstet 171:481–488

    CAS  PubMed  Google Scholar 

  30. Heiba SI, Jacobson AF, Cerqueira MD, Shattuc S, Sharma S (1999) The additive values of radionuclide ventriculography and extent of myocardium at risk to dipyridamole thallium-201 imaging for optimal risk stratification prior to vascular surgery. Nucl Med Commun 20:887–894

    Article  CAS  PubMed  Google Scholar 

  31. Port SC (1994) Radionuclide angiography. Am J Card Imaging 8:240–248

    CAS  PubMed  Google Scholar 

  32. Grech ED (2003) Pathophysiology and investigation of coronary artery disease. BMJ 326:1027–1030

    Article  PubMed Central  PubMed  Google Scholar 

  33. Libby P, Theroux P (2005) Pathophysiology of coronary artery disease. Circulation 111:3481–3488

    Article  PubMed  Google Scholar 

  34. Fuster V, Fallon JT, Badimon JJ et al (1997) The unstable atherosclerotic plaque: clinical significance and therapeutic intervention. Thromb Haemost 78:247–255

    CAS  PubMed  Google Scholar 

  35. Corti R, Fayad ZA, Fuster V et al (2001) Effects of lipid-lowering by simvastatin on human atheroscleortic lesions: a longitudinal study by high –resolution, noninvasive magnetic resonance imaging. Circulation 104:249–252

    Article  CAS  PubMed  Google Scholar 

  36. Ray KK, Cannon C (2005) The potential relevance of the multiple lipid-independent (pleiotropic) effects of statins in the management of acute coronary syndromes. J Am Coll Cardiol 46:1425–1433

    Article  CAS  PubMed  Google Scholar 

  37. DeWiner RJ, Koster RW, Stark A et al (1995) Value of myoglobin, troponin T, CK-Mb mass in ruling out an acute myocardial infarction in the emergency room. Circulation 92:3401–3407

    Article  Google Scholar 

  38. Piek JJ, Becker AE (1988) Collateral blood supply to the myocardium at risk in human myocardial infarction: a quantitative post-mortem assessment. J Am Coll Cardiol 1:1290–1296

    Article  Google Scholar 

  39. Kirkeeide R, Gould KL, Parsel L et al (1986) Assessment of coronary stenoses by myocardial imaging during coronary vasodilation: VII: validation of coronary flow reserve as a single integrated measure of stenosis severity accounting for all its geometry dimensions. J Am Coll Cardiol 7:103–113

    Article  CAS  PubMed  Google Scholar 

  40. Detrano R (1989) Exercise-induced ST segment depression in the diagnosis of multivessel coronary disease: a meta analysis. J Am Coll Cardiol 14:1501–1508

    Article  CAS  PubMed  Google Scholar 

  41. Maddahi J, Rodrigues E, Kiat J, Van Train KF, Berman DS (1995) Detection and evaluation of coronary artery disease by thallium-201 myocardial perfusion scintigraphy. In: DePuey EG, Berman DS, Garcia E (eds) Cardiac SPECT imaging. Raven, New York

    Google Scholar 

  42. Detrano R, Gianrossi R, Froelicher VF (1989) The diagnostic accuracy of the exercise electrocardiogram: a meta-analysis of 22 years of research. Prog Cardiovasc Dis 33:173–205

    Article  Google Scholar 

  43. Roger VL, Jacobsen SI, Pelikka PA et al (1998) Prognostic value of treadmill exercise testing. a population based study in Olmsted County, Minnesota. Circulation 98:2836–2841

    Article  CAS  PubMed  Google Scholar 

  44. Young M, Pan W, Wiesner J et al (1994) Characterization of arbutamine: a novel catecholamine stress agent for diagnosis of coronary artery disease. Drug Dev Res 32:19–28

    Article  CAS  Google Scholar 

  45. Iskandrian AS, Verani MS, Heo J (1994) Pharmacologic stress testing: mechanism of action, hemodynamic responses, and results in detection of coronary artery disease. J Nucl Cardiol 1:94–111

    Article  CAS  PubMed  Google Scholar 

  46. Taillefer R, Amyot R, Turpin S, Lambert R, Pilon C, Jarry M (1996) Comparison between dipyridamole and adenosine as pharmacologic coronary vasodilators in detection of coronary artery disease with thallium 201 imaging. J Nucl Med 3:204–211

    CAS  Google Scholar 

  47. Ranhosky A, Kempthorne-Rawson J, and the Intravenous Dipyridamole Thallium Imaging Study Group (1990) The safety of intravenous dipyridamole thallium myocardial perfusion imaging. Circulation 81:1205–1209

    Article  CAS  PubMed  Google Scholar 

  48. Travin MI, Wexler JP (1999) Pharmacological stress testing. Semin Nucl Med 29:298–318

    Article  Google Scholar 

  49. Hachamovich R, Berman DS, Shaw IJ et al (1998) Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 97:535–543

    Article  Google Scholar 

  50. Diamond GA, Forrester JS (1979) Analysis of probability as an aid in the clinical diagnosis of coronary artery disease. N Engl J Med 300:1350

    Article  CAS  PubMed  Google Scholar 

  51. Hachamovitch R, Berman DS, Kiat H et al (1996) Exercise myocardial perfusion SPECT in patients without known CAD. Incremental prognostic value and use in risk stratification. Circulation 93:905–914

    Article  CAS  PubMed  Google Scholar 

  52. Bateman TM (1997) Clinical relevance of a normal myocardial perfusion scintigraphic study. J Nucl Cardiol 4:172–173

    Article  CAS  PubMed  Google Scholar 

  53. Iskander S, Iskandrian AE (1998) Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol 32:57–62

    Article  CAS  PubMed  Google Scholar 

  54. Tatum JL, Jesse RI, Kontros MC et al (1997) Comprehensive strategy for the evaluation and triage of the chest pain patient. Ann Emerg Med 29:116–125

    Article  CAS  PubMed  Google Scholar 

  55. Heller GV, Stowers SA, Hendel RC, Herman SD, Daher E et al (1998) Clinical value of acute rest technetium-99m tetrofosmin tomographic myocardial perfusion imaging in patients with acute chest pain and nondiagnostic electrocardiograms. J Am Coll Cardiol 31:1011–10017

    Article  CAS  PubMed  Google Scholar 

  56. Dakik HA, Kleiman NS, Farmer JA, He ZX, Wendt JA et al (1998) Intensive medical therapy versus coronary angioplasty for suppression of myocardial ischemia in survivors of acute myocardial infarction. A prospective, randomized pilot study. Circulation 98:2017–2023

    Article  CAS  PubMed  Google Scholar 

  57. Mahmarian JJ, Mahmarian AC, Marks GF et al (1995) Role of adenosine thallium-201 tomography for defining long-term risk in patients after acute myocardial infarction. J Am Coll Cardiol 25:1333–1340

    Article  CAS  PubMed  Google Scholar 

  58. Rosanski A (1990) Applications of exercise radionuclide ventriculography in the clinical management of patients with coronary artery disease. J Thorac Imaging 5:37–46

    Article  Google Scholar 

  59. Dhar R, Ananthasubramaniam K (2011) Rubidium-82 cardiac positron emission tomography imaging: an overview for the general cardiologist. Cardiol Rev 19:255–263

    Article  PubMed  Google Scholar 

  60. Gibbons RJ, Chareonthaitawee P (2009) Establishing the prognostic value of Rb-82 PET myocardial perfusion imaging a step in the right direction. J Am Coll Cardiol Img 2:855–857

    Article  Google Scholar 

  61. Tamaki N, Yonekura Y, Senda M et al (1988) Valve and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography. J Nucl Med 29:1181–1188

    CAS  PubMed  Google Scholar 

  62. Gould KL (1991) PET perfusion imaging and nuclear cardiology. J Nucl Med 32:579–606

    CAS  PubMed  Google Scholar 

  63. Di Carli M, Czernin J, Hoh CK et al (1995) Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 91:1944–1951

    Article  PubMed  Google Scholar 

  64. Goldstein RA, Hicks CH, Kuhn JL et al (1984) Myocardial infarct imaging with rubidium-82 and PET in man. Circulation 70(Suppl II):9

    Google Scholar 

  65. Parodi O, Schwaiger M, Krivokapich J et al (1984) Regional myocardial blood flow and wall motion study in patients with designated acute subendocardial infarction (abstract). J Am Coll Cardiol 3:552

    Google Scholar 

  66. Yoshinaga K, Chow BJW, deKemp R, et al (2004) Prognostic value of rubidium-82 perfusion positron emission tomography: preliminary results from the consecutive 153 patients. J Am Coll Cardiol 43:338A(abstract)

    Google Scholar 

  67. Nemirovsky D, Henzlova MJ, Machac J, et al (2005) Prognosis of normal rubidium-82 myocardial perfusion study. J Nucl Cardiol 12:S118(abstract)

    Google Scholar 

  68. Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, post-ischemic ventricular dysfunction. Circulation 66:1146–1149

    Article  CAS  PubMed  Google Scholar 

  69. Ferrari R, LaCanna G, Giubbini R et al (1994) Left ventricular dysfunction due to stunning and hibernation in patients. Cardiovasc Drugs Ther 8(Suppl 2):371–380

    Article  PubMed  Google Scholar 

  70. Homans DC, Laxson DD, Sublett E et al (1989) Cumulative deterioration of myocardial function after repeated episodes of exercise-induced ischemia. Am J Physiol 256:H1462–H1471

    CAS  PubMed  Google Scholar 

  71. Shivalkar B, Flameng W, Szilard M et al (1999) Repeated stunning precedes myocardial hibernation in progressive multiple coronary artery stenosis. J Am Coll Cardiol 34:2126–2136

    Article  CAS  PubMed  Google Scholar 

  72. Haas F, Augustin N, Holper K, Wottke M, Haehnel C et al (2000) Time course and extent of improvement of dysfunctioning myocardium in patients with coronary artery disease and severely depressed left ventricular function after revascularization: correlation with positron emission tomographic findings. J Am Coll Cardiol 36:1927–1934

    Article  CAS  PubMed  Google Scholar 

  73. Bax JJ, Wijns W, Cornel JH et al (1997) Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol 30:1451–1460

    Article  CAS  PubMed  Google Scholar 

  74. Dilsizian V, Rocco TP, Freedman NMT et al (1990) Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 323:141–146

    Article  CAS  PubMed  Google Scholar 

  75. Gunning MG, Anagnostopoulos C, Knight CJ et al (1998) Comparison of Tl-201, Tc-99m-tetrofosmin, and dobutamine magnetic resonance imaging for identifying hibernating myocardium. Circulation 98:1869–1874

    Article  CAS  PubMed  Google Scholar 

  76. Dilsizian V, Arrhighi JA, Diodati JG et al (1994) Myocardial viability in patients with chronic coronary artery disease, comparison of Tc-99m sestamibi with thallium reinjection and F-18 fluorodeoxyglucose. Circulation 89:578–587

    Article  CAS  PubMed  Google Scholar 

  77. Vanoverschelde J-L, Wijns W, Depre C et al (1993) Mechanisms of chronic regional postischemic dysfunction in humans; new insights from the study of noninfarcted collateral-dependent myocardium. Circulation 87:1513–1523

    Article  CAS  PubMed  Google Scholar 

  78. Bolli R (1996) The early and late phases of preconditioning against myocardial stunning and the essential role of oxyradicals in the late phase: an overview. Basic Res Cardiol 91:57–63

    Article  CAS  PubMed  Google Scholar 

  79. Perrone-Filardy P, Bacharach S, Dilsizian V et al (1994) Clinical significance of regional myocardial glucose uptake in regions with normal blood flow in patients with chronic coronary artery disease. J Am Coll Cardiol 23:608–616

    Article  Google Scholar 

  80. Maes A, Flameng W, Nuyts J et al (1994) Histological alterations in chronically hypoperfused myocardium: correlation with PET findings. Circulation 90:735–745

    Article  CAS  PubMed  Google Scholar 

  81. Abraham A, Nichol G, Williams KA et al (2009) 18F-FDG PET of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: the Ottawa-FIVE substudy of the PARR 2 trial. J Nucl Med 51:567–574

    Article  Google Scholar 

  82. Sandler MP, Videlefsky S, Delbeke D et al (1995) Evaluation of myocardial ischemia using a rest metabolism/stress perfusion protocol with fluorine-18 deoxyglucose/technetium-99m MIBI and dual-isotope simultaneous acquisition single-photon emission computed tomography. J Am Coll Cardiol 26:870–888

    Article  CAS  PubMed  Google Scholar 

  83. Bax JJ, Cornel JH, Visser FC et al (1997) F-18 fluorodeoxyglucose single-photon emission computed tomography predicts functional outcome of dyssynergic myocardium after surgical revascularization. J Nucl Cardiol 4:302–308

    Article  CAS  PubMed  Google Scholar 

  84. Burt RW, Perkins OW, Oppenheim BE et al (1995) Direct comparison of fluorine-18-FDG SPECT, fluorine-18-FDG PET, and rest thallium-201 SPECT for detection of myocardial viability. J Nucl Med 36:176–179

    CAS  PubMed  Google Scholar 

  85. Haas F, Haehnel CJ, Picker W et al (1997) Preoperative positron emission tomographic viability assessment and perioperative and post-operative risk in patients with advanced ischemic heart disease. J Am Coll Cardiol 30:1693–1700

    Article  CAS  PubMed  Google Scholar 

  86. Beanlands RSB, Hendry PJ, Masters RG et al (1998) Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation 98:II-51–II-56

    CAS  Google Scholar 

  87. Willerson JT, Parkey RW, Bonte FJ et al (1975) Technetium stannous pyrophosphate myocardial scintigrams in patients with chest pain of varying etiology. Circulation 51:1046–1052

    Article  CAS  PubMed  Google Scholar 

  88. Holman LB (1980) Radioisotopic examination of the cardiovascular system. In: Branuwald E (ed) Heart disease: a textbook of cardiovascular medicine. Saunders, Philadelphia, pp 363–409

    Google Scholar 

  89. Holman BL, Tanaka TT, Lesch M (1976) Evaluation of radiopharmaceuticals for the detection of acute myocardial infarction in man. Radiology 121:427

    CAS  PubMed  Google Scholar 

  90. Huckell VF, Lyster DM, Morrison RT et al (1985) Comparison of technetium-99m pyrophosphate and technetium-99m methylene diphosphonate with variable amounts of stannous chloride in the detection of acute myocardial infarction. Clin Nucl Med 10:455–462

    Article  CAS  PubMed  Google Scholar 

  91. Parkey RW, Bonte FJ, Buja LM et al (1977) Myocardial infarct imaging with technetim-99m phosphates. Semin Nucl Med 7:15

    Article  CAS  PubMed  Google Scholar 

  92. Khaw BA, Fallon JT, Beller GA et al (1979) Specificity of localization of myosin specific antibody fragments in experimental myocardial infarction: histologic, histochemical, autoradiographic and scintigraphic studies. Circulation 60:1527–1531

    Article  CAS  PubMed  Google Scholar 

  93. Khaw BA, Yasuda T, Gold HK et al (1987) Acute myocardial infarct imaging with indium-111-labeled monoclonal antibody Fab. J Nucl Med 28:1671–1678

    CAS  PubMed  Google Scholar 

  94. Khaw BA, Gold HK, Yasuda T et al (1986) Scintigraphic quantification of myocardial necrosis in patients after intravenous injection of myosin-specific antibody. Circulation 74:501–508

    Article  CAS  PubMed  Google Scholar 

  95. Khaw BA, Strauss HW, Moore R et al (1987) Myocardial damage delineated by indium-111 antimyosin Fab and technetium-99m pyrophosphate. J Nucl Med 28:76–82

    CAS  PubMed  Google Scholar 

  96. McCance KL (1998) Pathophysiology, biological basis of disease in adults and children. Mosby, St. Louis, pp 968–1023

    Google Scholar 

  97. Guyton AC, Hall JE (1966) Textbook of medical physiology, 9th edn. Saunders, Philadelphia, pp 193–197

    Google Scholar 

  98. Weissleder R, Thrall JH (1989) The lymphatic system: diagnostic imaging studies. Radiology 172:315–317

    CAS  PubMed  Google Scholar 

  99. Weiss L (1988) Cell and tissue biology, 6th edn. Urban and Schwarzenberg, Baltimore, pp 499–514

    Google Scholar 

  100. Ruggiero R, Muz J, Fietsam R Jr (1993) vlung transplantation. J Thorac Cardiovasc Surg 106:167–171

    Google Scholar 

  101. Ruggiero R, Fietsam R Jr, Thomas GA (1994) Detection of canine allograft lung rejection by pulmonary lymphoscintigraphy. J Thorac Cardiovasc Surg 108:253

    CAS  PubMed  Google Scholar 

  102. Clodius L (1990) Lymphedema. In: McCarthy JG (ed) Plastic surgery. Saunders, Philadelphia, pp 4093–4120

    Google Scholar 

  103. Zuther JE, Norton S (2013) Lymphedema management. The comprehensive guide for practitioners, 3rd edition. Thieme Medical Publishers, New York-stuttgart

    Google Scholar 

  104. Peyton JW, Crosbie J, Bell TK (1981) High colloidal uptake in axillary nodes with metastatic disease. Br J Surg 68:507–509

    Article  CAS  PubMed  Google Scholar 

  105. Bergqvist L, Strand SE, Hafstrom L (1984) Lymphoscintigraphy in patients with malignant melanoma: a quantitative and qualitative evaluation of its usefulness. Eur J Nucl Med 9:129–135

    Article  CAS  PubMed  Google Scholar 

  106. Baas PC, Schraffordt KH, Hoekstra HJ, Van Bruggen JJ, Van der Weele LT, Oldhoff J (1992) Groin dissection in the treatment of lower-extremity melanoma. Short term and long term morbidity. Arch Surg 127:281–286

    Article  CAS  PubMed  Google Scholar 

  107. Morton DL, Wen DR, Wong JH (1992) Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg 127:392–399

    Article  CAS  PubMed  Google Scholar 

  108. Alex JC, Weaver DL, Fairbank JT (1993) Gamma-probe-guided lymph node localization in malignant melanoma. Surg Oncol 2:303–308

    Article  CAS  PubMed  Google Scholar 

  109. Carena M, Campini R, Zelaschi G (1988) Quantitative lymphoscintigraphy. Eur J Nucl Med 14:88–92

    Article  CAS  PubMed  Google Scholar 

  110. Rijke AM, Croft BY, Johnson RA (1990) Lymphoscintigraphy and lymphedema of the lower extremities. J Nucl Med 31:990–998

    CAS  PubMed  Google Scholar 

  111. Nawaz MK, Hamad MM, Abdel-Dayem HM (1990) Tc-99m human serum albumin lymphoscintigraphy in lymphedema of the lower extremities. Clin Nucl Med 15:794–799

    Article  CAS  PubMed  Google Scholar 

  112. Szuba A, Shin WS, Strauss HW, Rockson S (2003) The third circulation: radionuclide lymphoscintigraphy in the evaluation of lymphedema. J Nucl Med 44(1):43–57

    PubMed  Google Scholar 

  113. Mavi A, Lakhani P, Zhuang H, Gupta NC, Alavi A (2005) Fluorodeoxyglucose-PET in characterizing solitary pulmonary nodules, assessing pleural diseases and the initial staging, restaging, therapy planning, and monitoring response of lung cancer. Radiol Clin North Am 43(1):1–24

    Article  PubMed  Google Scholar 

  114. Koolen BB, Valdés ORA, Vogel WV, et al (2012) 18F-FDG PET/CT for the assessment of locoregional lymph node involvement and radiotherapy indication in stage II-III breast cancer treated with neoadjuvant chemotherapy. Cancer Res 72:nr P4–02–01(abstract)

    Google Scholar 

  115. Krasnow AZ, Hellman RS (1999) Lymphoscintigraphy revisited: 1999. In: Freeman LM (ed) Nuclear medicine annual. Mosby, St. Louis, pp 17–97

    Google Scholar 

  116. Donegan WL, Spratt JS (1995) Cancer of the breast, 4th edn. Saunders, Philadelphia

    Google Scholar 

  117. Glass EC, Essner R, Giuliana AE (1999) Sentinel node localization in breast cancer. Semin Nucl Med 24:57–68

    Article  Google Scholar 

  118. Hortobagy GN (1998) Treatment of breast cancer. N Engl J Med 339:974–984

    Article  Google Scholar 

  119. McMasters KM, Giuliano AE, Ross MI, Reintgen DS, Hunt KK, Byrd DR, Klimberg VS, Whitworth PW, Tafra LC, Edwards MJ (1998) Sentinel-lymph-node biopsy for breast cancer – not yet the standard of care. N Engl J Med 339:990–995

    Article  CAS  PubMed  Google Scholar 

  120. Albertini JJ, Lyman GH, Cox C, Yeatman T, Balducci L, Ku N, Shivers S, Berman C, Wells K, Rapaport D, Shons A, Horton J, Greenberg H, Nicosia S, Clark R, Cantor A, Reintgen DS (1966) Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA 276:1818–1822

    Article  Google Scholar 

  121. Balch CM, Reintgen DS, Kirkwood JM, Houghton A, Peters L, Ang KK (1997) Cutaneous melanoma. In: Devita VT (ed) Cancer: principles and practice of oncology, 5th edn. Lippincott-Raven, Philadelphia, pp 1947–1994

    Google Scholar 

  122. Homsi J, Kashani-Sabet M, Messina JL, Daud A (2005) Cutaneous melanoma: prognostic factors. Cancer Control 12(4):223–229

    PubMed  Google Scholar 

  123. Godellas CV, Berman CG, Lyman G (1995) The identification and mapping of melanoma regional nodal metastases: minimally invasive surgery for the diagnosis of nodal metastases. Am Surg 61:97–101

    CAS  PubMed  Google Scholar 

  124. Johnson TM, Bradford CR, Gruber SB, Sondak VK, Schwartz JL (2004) Staging workup, sentinel node biopsy, and follow-up tests for melanoma: update of current concepts. Arch Dermatol 140(1):107–13

    Article  PubMed  Google Scholar 

  125. Alex JC, Krag DN, Harlow SP (1998) Localization of Regional Lymphrodesim melanomas of head and neck. Arch Otolaryngal Head neck surg 124:135–140

    Google Scholar 

  126. Coit DG, Rogatko A, Brennan MF (1991) Prognostic factors in patients with melanoma metastatic to axillary or inguinal lymph nodes. Ann Surg 215:627–636

    Article  Google Scholar 

  127. Queirolo P, Taveggia P, Gipponi M, Sertoli MR (2004) Sentinel lymph node biopsy in melanoma patients: the medical oncologist’s perspective. J Surg Oncol 85(3):162–165

    Article  PubMed  Google Scholar 

  128. Alazraki NP, Eshima D, Eshima LA (1997) Lymphoscintigraphy, the sentinel node concept, and the intraoperative gamma probe in melanoma, breast cancer, and other potential cancers. Semin Nucl Med 27:55–67

    Article  CAS  PubMed  Google Scholar 

  129. American Joint Committee on Cancer (1997) AJCC cancer staging manual, 5th edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  130. Kirkwood JM, Resnick GD, Cole BF (1997) Efficacy, safety, and risk-benefit analysis of adjuvant interferon alfa-2b in melanoma. Semin Oncol 24(Suppl 4):S216–S223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elgazzar, A.H. (2014). Cardiovascular System. In: Synopsis of Pathophysiology in Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-03458-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03458-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03457-7

  • Online ISBN: 978-3-319-03458-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics