Skip to main content

Musculoskeletal System

  • Chapter
  • First Online:
Synopsis of Pathophysiology in Nuclear Medicine
  • 940 Accesses

Abstract

Bone is a rigid connective tissue which provides support and protection for body organs and tissues. Within certain bones such as the skull, vertebrae, and ribs, marrow cavities serve as sites of blood formation. Bone also has an important function in mineral homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mourad LA (1998) structure and function of the musculoskeletal. In: McCane KL, Huether SE (eds) pathophysiology, 3rd edn. Mosby, Philadelphia, pp 1405–1434

    Google Scholar 

  2. Suzuki R, Domon T, Wakita M (2000) Some osteocytes released from their lacunae are embedded again in the bone and not regulated by osteoclasts during remodeling. Anta Embryol 202:119–128

    CAS  Google Scholar 

  3. Gillepsy T, Gillepsy MP (1991) Osteoporosis. Radiol Clin North 29:77–84

    Google Scholar 

  4. Boskey AL (1981) Current concepts of the physiology and biochemistry of calcification. Clin Orthop 157:225

    CAS  PubMed  Google Scholar 

  5. McCarthy EF (1997) Histopathologic correlates of positive bone scan. Semin Nucl Med 27:309–320

    CAS  PubMed  Google Scholar 

  6. Dalinka MK, Aronchick JM, Haddad JG (1983) Paget’s disease. Orthop Clin North Am 4:3–19

    Google Scholar 

  7. Vogler JB, Murphy WA (1988) Bone marrow imaging. Radiology 158:579–593

    Google Scholar 

  8. Francis MD, Slough CL, Tofe AJ, Silberstein EB (1975) Factors affecting uptake and retention of technetium-99 m-diphosphonate and technetium 99 m pertechnetate in osseous, connective and soft tissues. Calcif Tissue Res 20:303–311

    Google Scholar 

  9. Haas DW, McAndrew M (1995) Bacterial osteomyelitis in adults: evolving considerations in diagnosis and treatment. Am J Med 101:550–551

    Google Scholar 

  10. Cierny G, Mader JT, Pennick H (1985) A clinical staging system of adult osteomyelitis. Contemp Orthop 10:17–37

    Google Scholar 

  11. Mandell GA (1995) Imaging in the diagnosis of musculoskeletal infections in children. Curr Probl Pediatr 25:218–237

    Google Scholar 

  12. Mader JT, Dhraminder M, Calhoun J (1997) A practical guide to the diagnosis and management of bone and joint infections. Drugs 54:253–254

    CAS  PubMed  Google Scholar 

  13. Lee DP, Waldvogel FA (2004) Osteomyelitis. Lancet 354:359–379

    Google Scholar 

  14. Elgazzar AH, Abdel-Dayem HM (1999) Imaging skeletal infections: evolving considerations. In: Feeman LM (ed) Nuclear medicine annual. Lippincott/Williams and Wilkins, Philadelphia, pp 157–191

    Google Scholar 

  15. Elgazzar AH, Abdel-Dayem HM, Clark J, Maxon HR (1995) Multimodality imaging of osteomyelitis. Eur J Nucl Med 22:1043–1053

    CAS  PubMed  Google Scholar 

  16. Song KS, Ogden JA, Ganey T, Guidera KT (1997) Contiguous discitis and osteomyelitis in children. J Pediatr Orthop 17:470–477

    CAS  PubMed  Google Scholar 

  17. Forrest RD, Jacobson CA, Yudkin JS (1985) Glucose intolerance and hypertension in north London: the Islington diabetes survey. Diabet Med 3:338–342

    Google Scholar 

  18. Bamberger DM, Daus GP, Gerding DN (1987) Osteomyelitis in the feet of diabetic patients: long term results, prognostic factors, and the role of antimicrobial and surgical therapy. Am J Med 83:653–660

    Google Scholar 

  19. Horwitz SH (1993) Diabetic neuropathy. Clin Orthop 295:78–85

    Google Scholar 

  20. Gold RH, Tang DTF, Crim JR, Seeger LL (1995) Imaging the diabetic foot. Skeletal Radiol 24:553–571

    Google Scholar 

  21. Griffiths HJ (1995) Orthopedic complications. Radiol Clin North Am 33:401–410

    CAS  PubMed  Google Scholar 

  22. Harris WH, Sledge CB (1990) Total hip and total knee replacement (part I). NEJM 323:725–731. 37. Harris WH, Sledge CB (1990) Total hip and total knee replacement (part II). NEJM 323:801–807

    Google Scholar 

  23. Hendrix RW, Anderson TM (1981) Arthrographic and radiologic evaluation of prosthetic joints. Radiol Clin North Am 19:349–354

    CAS  PubMed  Google Scholar 

  24. Griffiths HJ, Lovelock JE, Evarts CM (1984) The radiology of total hip replacement. Skel Radiol 12:1–11

    CAS  Google Scholar 

  25. Barton LL, Dunkle LM, Habib FH (1987) Septic arthritis in childhood: a 13-year review. Am J Dis Child 141:898–900

    CAS  PubMed  Google Scholar 

  26. Welkon CJ, Long SS, Fisher MC, Alburger PD (1985) Pyogenic arthritis in infants and children: a review of 95 cases. Pediatr Infect Dis 5:559–575

    Google Scholar 

  27. Silberstein EB, Elgazzar AH, Fernandez- Uloa M, Nishiyama H (1995) Skeletal scintigraphy in non-neoplastic osseous disorders. In: Henkin RE, Bles MA, Dillehay GL, Halama JR, Karesh SM, Wagner PH, Zimmer AM (eds) Textbook of nuclear medicine. Mosby, New York, pp 1141–1197

    Google Scholar 

  28. Waldvogel FA, Medoff G, Swartz MN (1970) Osteomyelitis: a review of clinical features, therapeutic considerations and unusual aspects, part I. N Engl J Med 282:198–205

    CAS  PubMed  Google Scholar 

  29. Connolly LP, Connolly SA, Drubach LA, Jaramillo D, Treves ST (2002) Acute hematogenous osteomyelitis of children: assessment of skeletal scintigraphy-based diagnosis in the Era of MRI. J Nucl Med 43:1310–1315

    PubMed  Google Scholar 

  30. Tuson GE, Hoffman EB, Mann MD (1994) Isotope bone scanning for acute osteomyelitis and septic arthritis in children. J Bone Joint Surg (Br) 75B:305–310

    Google Scholar 

  31. Handmaker H, Giammona ST (1984) Improved early diagnosis of acute inflammatory skeletal-articular diseases in children: a two radiopharmaceutical approach. Pediatrics 73:551–559

    Google Scholar 

  32. Pennington WT, Mott MP, Thometz JG, Sty JR, Metz D (1999) Photopenic bone scan osteomyelitis : a clinical perspective. J Pediatr Orthop 19:595–598

    Google Scholar 

  33. Sundberg SB, Savage JP, Foster BK (1989) Technetium phosphate bone scan in the diagnosis of septic arthritis in childhood. J Pediatr Orthop 9:579–585

    CAS  PubMed  Google Scholar 

  34. Gilday DL, Paul DJ, Paterson J (1975) Diagnosis of osteomyelitis in children by combined blood pool and bone imaging. Radiology 117:331–335

    CAS  PubMed  Google Scholar 

  35. Johnson JE, Kennedy EJ, Shereff MJ, Patel NC, Collier BD (1995) Prospective study of bone, In-111 labeled white blood cell and gallium scanning for the evaluation of osteomyelitis in the diabetic foot. Foot Ankle Int 17:10–15

    Google Scholar 

  36. Grerand S, Dolan M, Laing P, Bird M, Smith ML, Klenerman L (1995) Diagnosis of osteomyelitis in neuropathic foot ulcers. J Bone Joint Surg (Br) 78B:51–55, Update

    Google Scholar 

  37. Ezuddin S, Yuille D, Spiegelhoff D (1992) The role of dual bone and WBC scan imaging in the evaluation of osteomyelitis and cellulitis using both planar and SPECT imaging. J Nucl Med 33:839

    Google Scholar 

  38. van der Bruggen W, Bleeker-Rovers CP, Boerman OC, Gotthardt M, Oyen WJG (2010) PET and SPECT in osteomyelitis and prosthetic bone and joint infections: a systematic review. Semin Nucl Med 40:3–15

    PubMed  Google Scholar 

  39. Seabold JE, Nepola JV, Marsh JL et al (1991) Postoperative bone marrow alterations: potential pitfalls in the diagnosis of osteomyelitis with In-111-labeled leukocyte scintigraphy. Radiology 180:741–747

    CAS  PubMed  Google Scholar 

  40. Hakki S, Harwood SJ, Morrissey MA et al (1997) Comparative study of monoclonal antibody scan in diagnosing orthopedic infection. Clin Orthop 335:275–285

    PubMed  Google Scholar 

  41. Hartmann A, Eid K, Dora C, Trentz O, von Schulthess GK, Stumpe KDM (2007) Diagnostic value of 18F-FDG PET/CT in trauma patients with suspected chronic osteomyelitis. J Nucl Med Mol Imaging 34:704–714

    Google Scholar 

  42. Mariani G, Bruselli L, Kuwert T, Kim EE, Flotats A, Israel O, Dondi M, Watanabe N (2010) A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging 37:1959–1985

    PubMed  Google Scholar 

  43. de winter F, van de Wide C, Vogelaers D, et al (2001). Flourine-18 fluorodeoxyglucose-position emission tomagraphy: a highly accurate imaging modality for the diagnosis of chronic musculoskeletal infections. J Bone Joint Surg 83-A:651–660

    Google Scholar 

  44. Win Z, O’Flynn L, Singh A, Khan S, O’Rourke EJ, Cook GS, Friedland JS, Al-Nahhas A (2005) 18F-FDG PET in the diagnosis and monitoring of vertebral osteomyelitis: a comparison with MRI. Nucl Med Commun 27:303

    Google Scholar 

  45. Bar-Shalom R, Yefremov N, Guralnik, et al (2006). SPECT/CT Using 67Ga and 111In-Labeled Leukocyte Scintigraphy for Diagnosis of Infection. J Nucl Med 47:587–594

    Google Scholar 

  46. Greyson ND, Tepperman PS (1984) Three-phase bone studies in hemiplegia with reflex sympathetic dystrophy and the effect of disuse. J Nucl Med 25:423–429

    CAS  PubMed  Google Scholar 

  47. Fragniere B, Chotel F, Vargas BB, Berard J (2001) The value of early postoperative bone scan in slipped capital femoral epiphysis. J Pediatr Orthop B 10:51–55

    CAS  PubMed  Google Scholar 

  48. Conway JJ (1993) A scintigraphic classification of Legg-Calve-Perthes disease. Semin Nucl Med 23:274–295

    CAS  PubMed  Google Scholar 

  49. Resnick D, Niwayama G (1998) Osteonecrosis: diagnostic techniques and complications. In: Resnick D, Niwayama G (eds) Diagnosis of bone and joint disorders second editions. Saunders, Philadelphia, p 3258

    Google Scholar 

  50. Smith JA (1995) Bone disorders in sickle cell disease. Hematol Oncol Clin North Am 10:1345–1356

    Google Scholar 

  51. Kim SK, Miller JH (2002) Natural history and distribution of bone and bone marrow infarction in sickle cell hemoglobinopathies. J Nucl Med 43:895–900

    Google Scholar 

  52. Skaggs DL, Kim SK, Green NW, Harris D, Miler JH (2001) Differentiation between bone infarct and acute osteomyelitis in children with sickle-cell disease with use of sequential radionuclide bone-marrow and bone scans. J Bone Joint Surg Am 83:1810–1813

    PubMed  Google Scholar 

  53. Collier BD, Carrera GF, Johnson RP, Isitman AT, Hellman RS, Knobel J et al (1985) Detection of femoral head avascular necrosis in adults by SPECT. J Nucl Med 25:979–987

    Google Scholar 

  54. Janig W, Baron R (2003) Complex regional pain syndrome: mystery explained? Lancet Neurol 2:587–597

    Google Scholar 

  55. Shehab D, Al-Jarralah K, Al-Awadhi A et al (1999) Reflex sympathetic dystrophy: an under-recognized entity in Kuwait. APLAR J Rheumatol 3:343–347

    Google Scholar 

  56. Han J, Ryu JS, Shin MJ, Kang GH, Lee HK (2000) Fibrous dysplasia with barely increased uptake on bone scan: a case report. Clin Nucl Med 25:785–788

    CAS  PubMed  Google Scholar 

  57. Aras M, Ones T, Dave F, et al (2013). False positive FDG-PET/CT resulting from fibrous dysplasia of bone in work up of a patient with bladder cancer: case report and review of literature. Iranian Journal of Radiology 10:41–44

    PubMed Central  Google Scholar 

  58. Tsuyuguchi N, Ohata K, Morino M, Takami T, Goto T, Nishio A, Hara M, Sunada I (2002) Magnetic resonance imaging and [11c] methyl-L-methionine positron emission tomography of fibrous dysplasia-two case reports. Neurol Med Chir 42:341–345

    Google Scholar 

  59. Mourad A (1998) Alterations of musculoskeletal function. In: McCance KL, Huether SE (eds) Pathophysiology, 3rd edn. Mosby, Philadelphia, pp 1435–1485

    Google Scholar 

  60. Holder LE, Michael RH (1984) The specific scintigraphic pattern of shin splints in the lower leg: concise communication. J Nucl Med 25:855–859

    Google Scholar 

  61. Resnick D, (1989). Bone and Joint imaging, Saunders, Philadelphia, pp 979–999

    Google Scholar 

  62. Mandell GA (1998) Nuclear Medicine in pediatric orthopedics. Semin Nucl Med 28:95–115

    CAS  PubMed  Google Scholar 

  63. Harcke HT, Mandell GA (1993) Scintigraphic evaluation of the growth plate. Semin Nucl Med 23:255–273

    Google Scholar 

  64. King MA, Maxon HR (1984) Paget’s Disease: the role of nuclear medicine in diagnosis and treatment. In: Silberstein EB (ed) Bone scintigraphy. Futura publishing Company, Mount Kisco, New York, pp 333–345

    Google Scholar 

  65. Renier JC, Audran M (1997) Polyostotic Paget’s disease. A search for lesions of different durations and for new lesions. Rev Rhum Engl Ed 54:233–242

    Google Scholar 

  66. Gillespy T, Gillespy MP (1991) Osteoporosis. Radiol Clin North Am 29:77–84

    PubMed  Google Scholar 

  67. Christiansen C, RIIS BJ (1989) Optimizing bone mass in the permenopause. In: Kleerehoper M, Krane SM (eds) Clinical disorder of bone and mineral metabolism. Mary An Liebert, Inc, New York, p 189

    Google Scholar 

  68. Ettinger B, Genant HK (eds) (1987) Osteoporosis update. Radiology Research and Education foundation, San Francisco

    Google Scholar 

  69. Cooper C, Aihie-Sayer A (1994) Osteoporosis: recent advances in pathogenesis and treatment. Q J Med 87:203–209

    CAS  PubMed  Google Scholar 

  70. Simon SR (1994) Osteoporosis: orthopedic basic science. American Academy of Orthopedic Surgeons, Chicago

    Google Scholar 

  71. Marshall D, Johnell O, Wedel H (1995) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    Google Scholar 

  72. Eastell R (1998) Treatment of postmenopausal osteoporosis. N Engl J Med 338:735–745

    Google Scholar 

  73. Njeh CF, Fuerst T, Hans D, Blake GM, Genant HK (1999) Radiation exposure in bone mineral assessment. Appl Radiat Isot 50:215–235

    CAS  PubMed  Google Scholar 

  74. WHO (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO Technical Report Series 843. Geneva: World Health Organization

    Google Scholar 

  75. Brasier AR, Nussbaum SR (1988) Hungry bone syndrome: clinical and biochemical predictors of its occurrence after parathyroid surgery. Am J Med 84:654

    CAS  PubMed  Google Scholar 

  76. Sy WM, Mittal AK (1975) Bone scan in chronic dialysis patients with evidence of secondary hyperparathyroidism and renal osteodystrophy. Br J Radiol 48:878–884

    CAS  PubMed  Google Scholar 

  77. Dabbagh S (1998) Renal osteodystrophy. Curr Opin Pediatr 10:190–195

    CAS  PubMed  Google Scholar 

  78. Cicconetti A, Maffeini C, Piro FR (1999) Differential diagnosis in a case of brown tumor caused by primary hyperparathyroid ism. Minerva Stomatol 48:553–558

    CAS  PubMed  Google Scholar 

  79. Rt L, Hensinger RN (1997) Slipped capital femoral epiphysis associated with renal failure osteodystrophy. J Pediatr Orthop 17:205–211

    Google Scholar 

  80. Yalcinkaya F, Ince E, Tumer N, Ensari A, Ozkaya N (2000) Spectrum of renal osteodystrophy in children on continuous ambulatory peritoneal dialysis. Pediatr Int 42:53–57

    CAS  PubMed  Google Scholar 

  81. Seggewiss R, Hess T, Fiehn C (2003) A family with a variant form of primary hypertrophic osteoarthropathy restricted to the lower extremities. Joint Bone Spine 70:230–233

    PubMed  Google Scholar 

  82. Ali A, Tetalman MR, Fordham EW et al (1980) Distribution of hypertrophic pulmonary osteoarthropathy. AJR Am J Roentgenol 134:771–780

    CAS  PubMed  Google Scholar 

  83. McCarthy D (ed) (1984) Arthritis and allied conditions. Lea and Fabiger, Philadelphia

    Google Scholar 

  84. Cindas A, Gokce-Kustal Y, Kirth PO, Caner B (2001) Scintigraphic evaluation of synovial inflammation in rheumatoid arthritis with (99 m) technetium-labelled human polyclonal immunoglobulin G. Rheumatol Int 20:71–77

    CAS  PubMed  Google Scholar 

  85. Weissberg DI, Resnick D, Taylor A et al (1978) Rheumatoid arthritis and its variants: analysis of scintiphotographic, radiographic and clinical examination. AJR Am J Roentgenol 131:555–573

    Google Scholar 

  86. Rupani HD, Holder LE, Espinola DA et al (1985) Three-phase radionuclide bone imaging in sports medicine. Radiology 155:187–195

    Google Scholar 

  87. Bahk Y (2000) Combined scintigraphic and radiographic diagnosis of bone and joint diseases, secondth edn. springer, Berlin

    Google Scholar 

  88. Orzel JA, Redd TG (1985) Heterotopic bone formation: clinical, laboratory and imaging correlation. J Nucl Med 25:125–132

    Google Scholar 

  89. Elgazzar AH, Martich V, Gelfand MJ (1995) Advanced fibrodysplasia ossificans progressiva. Clin Nucl Med 20:519–521

    CAS  PubMed  Google Scholar 

  90. Shehab D, Elgazzar A, Collier BD (2002). Heterotopic ossification. J Nucl Med 43:346–353

    Google Scholar 

  91. Kawaguchi Y, Hasegawa T, Oka S, Sato C, Arima N, Norimatsu H (2001) Mechanism of intramedullary high intensity area on T2-weighted magnetic resonance imaging in osteoid osteoma: a possible role of COX-2 expression. Pathol Int 51:933–937

    CAS  PubMed  Google Scholar 

  92. Flemming DJ, Murphey MD (2000) Enchondroma and chondrosarcoma. Semin Musculoskelet Radiol 4(1):59–71

    CAS  PubMed  Google Scholar 

  93. Elgazzar AH, Malki AA, Abdel-Dayem HM, Sahweil A, Razzak S, Jahan S, Elsayed M, Omar YT (1989) Role of thallium 201 in the diagnosis of solitary bone lesions. Nucl Med Commun 10:477–485

    CAS  PubMed  Google Scholar 

  94. Resnik D, Kyriakos M, Greenway GD (2002) Tumors and tumor-like lesions of bone. Diagnosis of bone and joint disorders, 4th edn. Saunders, Philadelphia, pp 3979–3985

    Google Scholar 

  95. Franzius C, Sciuk J, Brinkschmidt C, Jurgens H, Schober O (2000) Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission. Clin Nucl Med 25:874–878

    CAS  PubMed  Google Scholar 

  96. Yildiz C, Erler K, Atesalp AS, Basbozkurt M (2003) Benign bone tumors in children. Curr Opin Pediatr 15:58–67

    PubMed  Google Scholar 

  97. Ossiani M, Elgazzar AH (2003) Multiple osteochondroma (unpublished data)

    Google Scholar 

  98. Moser RP Jr, Masewell JF (1987) An approach to primary bone tumors. Radiol Clin North Am 25:1049–1093

    PubMed  Google Scholar 

  99. Franzius C, Daldrup-Link HE, Wagner-Bohn A, Sciuk J, Heindel WL, Jurgens H, Schober O (2002) FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol 13:157–160

    CAS  PubMed  Google Scholar 

  100. Abdel-Dayem HM (1997) The role of nuclear medicine in primary bone and soft tissue tumors. Semin Nucl Med 27:355–363

    CAS  PubMed  Google Scholar 

  101. Franzius F, Bielack S, Flege S, Sciuk J, Heribert Jürgens H, Schober O (2002) Prognostic significance of 18F-FDG and 99mTc-methylene diphosphonate uptake in primary osteosarcoma. J Nucl Med 43:1012–1017

    CAS  PubMed  Google Scholar 

  102. Murthy NJ, Rao H, Friedman AS (2000) Positive findings on bone scan in multiple myeloma. South Med J 93:1028–1029

    CAS  PubMed  Google Scholar 

  103. Alexandrakis MG, Kyriakou DS, Passam F, Koukouraki S, Karkavitsas N (2001) Value of Tc-99 m sestamibi scintigraphy in the detection of bone lesions in multiple myeloma: comparison with Tc-99 m methylene diphosphonate. Ann Hematol 80:349–353

    CAS  PubMed  Google Scholar 

  104. Connolly LP, Drubach LA, Ted Treves S (2002) Applications of nuclear medicine in pediatric oncology. Clin Nucl Med 27:117–125

    PubMed  Google Scholar 

  105. Batson OV (1940) The function of the vertebral veins and their role in the spread of metastases. Ann Surg 112:138

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Resnick D, Niwayama G (1998) Skeletal metastases. In: Resnick D, Niwayama G (eds) Diagnosis of bone and joint disorders, 2nd edn. Saunders, Philadelphia, pp 3945–4010

    Google Scholar 

  107. Shutte H (1979) The influence of bone pain on the results of bone scans. Cancer 34:2039–2043

    Google Scholar 

  108. Rybak LD, Rosenthal DI (2001) Radiological imaging for the diagnosis of bone metastases. Q J Nucl Med 45:53–54

    CAS  PubMed  Google Scholar 

  109. Ron IG, Striecker A, Lerman H, Bar-Am A, Frisch B (1999) Bone scan and bone biopsy in the detection of skeletal metastases. Oncol Rep 5:185–188

    Google Scholar 

  110. Goris ML, Basso LV, Etcublanaas E (1980) Photopenic lesions in bone scintigraphy. Clin Nucl Med 5:299–301

    CAS  PubMed  Google Scholar 

  111. Sy WM, Westring DW, Weinberger G (1975) Cold lesions on bone imaging. J Nucl Med 15:1013–1015

    Google Scholar 

  112. Taoka T, Mayr NA, Lee HJ, Yuh WT, Simonson TM, Rezai K, Berbaum KS (2001) Factors influencing visualization of vertebral metastases on MR imaging versus bone scintigraphy. Am J Roentgenol 175:1525–1530

    Google Scholar 

  113. Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jurgens H, Schober O, Rummeny EJ (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 177:229–235

    CAS  PubMed  Google Scholar 

  114. Moog F, Kotzerke J, Reske SN (1999) FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma. J Nucl Med 40:1407–1413

    CAS  PubMed  Google Scholar 

  115. Garcia JR, Simo M, Soler M, Perez G, Lopez S, Lomena F (2005) Relative roles of bone scintigraphy and positron emission tomography in assessing the treatment response of bone metastases. Eur J Nucl Med Mol Imaging 32:1243–1244

    CAS  PubMed  Google Scholar 

  116. Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, Smith GT (2010) SNM practice guideline for sodium 18F-fluoride PET/CT bone scans. J Nucl Med 51:1813–1820

    PubMed  Google Scholar 

  117. Yen RF, Chen CY, Cheng MF, Wu YW, Shiau YC, Wu K, Hong RL, Yu CJ, Wang KL, Yang RS (2010) The diagnostic and prognostic effectiveness of F-18 sodium fluoride PET-CT in detecting bone metastases for hepatocellular carcinoma patients. Nucl Med Commun 31:537–545

    Google Scholar 

  118. Sheth S, Colletti PM (2012) Atlas of sodium fluoride PET bone scans: atlas of NaF PET bone scans. Clin Nucl Med 37:e110–e115

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elgazzar, A.H. (2014). Musculoskeletal System. In: Synopsis of Pathophysiology in Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-03458-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03458-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03457-7

  • Online ISBN: 978-3-319-03458-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics