Skip to main content

Basis of Radiopharmaceutical Localization

  • Chapter
  • First Online:
Synopsis of Pathophysiology in Nuclear Medicine

Abstract

A disease is defined in terms of the failure of a normal physiological or biochemical process. Nuclear medicine utilizes these processes. Its diagnostic procedures measure (a) regional blood flow, transport, and cellular localization of various molecules; (b) metabolism and bioenergetics of tissues; (c) physiological function of organs; and (d) intracellular and intercellular communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krasnow AZ, Hellman RS, Timins ME et al (1997) Diagnostic bone scanning in oncology. Semin Nucl Med 27:107–141

    Article  CAS  PubMed  Google Scholar 

  2. Delmon-Moingeon LI, Piwinca-Wormas D, Van den Abbeele AD, Holman BL, Davison A, Jones AG (1990) Uptake of the cation hexakis (2-methoxyisobutylisonitrile)-technetium-99 m by human carcinoma cell lines in vitro. Cancer Res 50:2198–2202

    CAS  PubMed  Google Scholar 

  3. Arbab AS, Koizumi K, Toyama K, Araki T (1996) Uptake of technetium-99 m-tetrofosmin, technetium-99 m-MIBI and thallium-201 in tumor cell lines. J Nucl Med 37:1551–1556

    CAS  PubMed  Google Scholar 

  4. Vallabhajosula SR, Harwig JF, Siemsen JK et al (1980) Radiogallium localization in tumors: blood binding and transport and the role of transferrin. J Nucl Med 21:650–656

    CAS  PubMed  Google Scholar 

  5. Hayes RL, Rafter JJ, Byrd BL, Carlton JE (1981) Studies of the in vivo entry of Ga-67 into normal and malignant tissue. J Nucl Med 22:325–332

    CAS  PubMed  Google Scholar 

  6. Weiner RE (1996) The mechanism of 67 Ga localization in malignant disease. Nucl Med Biol 23:745–751

    Article  CAS  PubMed  Google Scholar 

  7. Mueckler M (1994) Facilitative glucose transporters. Eur J Biochem 219:713–725

    Article  CAS  PubMed  Google Scholar 

  8. Weich HF, Strauss HW, Pitt B (1977) The extraction of thallium-201 by the myocardium. Circulation 56:188

    Article  CAS  PubMed  Google Scholar 

  9. Sessler MJ, Geck P, Maul FD et al (1986) New aspects of cellular Tl-201 uptake: co-transport is the central mechanism of ion uptake. Nucl Med 25:24–27

    CAS  Google Scholar 

  10. Eshima D, Taylor A (1992) Tc-99 m mercaptoacetyltriglycine (Tc-99mMAG3): update on the new Tc-99 m renal tubular function agent. Semin Nucl Med 22:61–73

    Article  CAS  PubMed  Google Scholar 

  11. Alazraki NP, Eshima D, Eshima LA et al (1997) Lymphoscintigraphy, the sentinel node concept, and the intraoperative gamma probe in melanoma, breast cancer, and other potential cancers. Semin Nucl Med 27:55–67

    Article  CAS  PubMed  Google Scholar 

  12. Gallagher BM, Fowler JS, Gutterson NI et al (1978) Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F]2-deoxy-2-fluoro-D-glucose. J Nucl Med 19:1154–1161

    CAS  PubMed  Google Scholar 

  13. Kubota R, Yamada S, Kubota K et al (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiographic comparison with FDG. J Nucl Med 33:1872–1980

    Google Scholar 

  14. Vaalburg W, Coenen HH, Crouzel C et al (1992) Amino acids for the measurement of protein synthesis in vivo by PET. Nucl Med Biol 19:227–237

    CAS  Google Scholar 

  15. Ishiwata K, Kubota K, Murakami M, Kubota R, Senda M (1993) A comparative study on protein incorporation of L-[methyl-3H]methionine, L-[1-14C]leucine and L-[2-18F]fluorotyrosine in tumor bearing mice. Nucl Med Biol 20:895–899

    Article  CAS  PubMed  Google Scholar 

  16. Gambini JP, Quagliata A, Finozzi R, Serra P, Lago G, Gaudiano J, Engler H, Alonso O (2011) Tc-99 m- and Ga-68-labeled somatostatin analogues in the evaluation of Hurthle cell thyroid cancer. Clin Nucl Med 36:803–804

    Article  PubMed  Google Scholar 

  17. Wester HJ, Herz M, Weber W (1999) Synthesis and radiopharmacology of O-[2-18F]fluorethyltyrosine for tumor imaging. J Nucl Med 40:205–212

    CAS  PubMed  Google Scholar 

  18. Nunn A, Linder K, Strauss HW (1995) Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 22:265–280

    Article  CAS  PubMed  Google Scholar 

  19. Rasey JS, Koh WJ, Evans ML et al (1996) Quantifying regional hypoxia in tumors with positron emission tomography: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36:417–428

    Article  CAS  PubMed  Google Scholar 

  20. Lewis JS, McCarthy DW, McCarthy TJ, Fugibayashi Y, Welch MJ (1999) Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model. J Nucl Med 40:177–183

    CAS  PubMed  Google Scholar 

  21. Parliament MB, Chapman JD, Urtasunn RC et al (1992) Noninvasive assessment of human tumor hypoxia with 123I-iodoazomycin arabinoside: preliminary report of a clinical study. Br J Cancer 65:90–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ballinger JR, Kee JWM, Rauth AM (1996) In vitro and in vivo evaluation of a technetium-99 m-labeled 2-nitroimidazole (BMS181321) as a marker of tumor hypoxia. J Nucl Med 37:1023–1031

    CAS  PubMed  Google Scholar 

  23. Cook GJR, Houston S, Barrington SF, Fogelman I (1998) Technetium-99 m-labeled HL91 to identify tumor hypoxia: correlation with fluorine-18-FDG. J Nucl Med 39:99–103

    CAS  PubMed  Google Scholar 

  24. Livingston RB, Ambus U, George SL, Freireich EJ, Hart JS (1974) In vitro determination of thymidine-[3H] labeling index in human solid tumors. Cancer Res 34:1376–1380

    CAS  PubMed  Google Scholar 

  25. Goethals P, Lameire N, van Eijkeren M (1996) Methylcarbon-11 thymidine for in vivo measurement of cell proliferation. J Nucl Med 37:1048–1052

    CAS  PubMed  Google Scholar 

  26. Kassis AI, Adelstein SJ (1996) Preclinical animal studies with radioiododeoxyuridine. J Nucl Med 37(Suppl):10s–12s

    CAS  PubMed  Google Scholar 

  27. O’Donoghue JA (1996) Strategies for selective targeting of Auger electron emitters to tumor cells. J Nucl Med 37(Suppl):3s–6s

    PubMed  Google Scholar 

  28. Patel YC, Greenwood MT, Panetta R, Demchyshyn L, Niznik H, Srikant CB (1995) Minireview: the somatostatin receptor family. Life Sci 57:1249–1265

    Article  CAS  PubMed  Google Scholar 

  29. Reubi JC, Laissue J, Krenning EP, Lamberts SWJ (1992) Somatostatin receptors in human cancer: incidence, characteristics, functional correlates and clinical implication. J Steroid Biochem Mol Biol 43:27–35

    Article  CAS  PubMed  Google Scholar 

  30. Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, van Hagen M, Postema PT, de Jong M, Reubi JC (1993) Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 20:716–731

    Article  CAS  PubMed  Google Scholar 

  31. Virgolini I, Pangerl T, Bischof C, Smith-Jones P, Peck-Radosavljevic M (1997) Somatostatin receptor subtype expression in human tissues: a prediction for diagnosis and treatment of cancer? Eur J Clin Invest 27:645–647

    Article  CAS  PubMed  Google Scholar 

  32. de Jong M, Breeman WAP, Kwekkeboom DJ, Valkema R, Krenning EP (2009) Tumor imaging and therapy using radiolabeled somatostatin analogues. Acc Chem Res 42:873–880

    Article  PubMed  Google Scholar 

  33. Kunikowska J, Krolick L, Hubalewska-Dydejczyk A et al (2011) Clinical results of radionuclide therapy of neuroendocrine tumors with 90Y-DOTA-TATE and tandem90Y/177Lu-DOTA-TATE: which is a better therapy option? Eur J Nucl Med Mol Imaging 38:1788–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. de Jong M, Breeman WA, Valkema R et al (2005) Combination radionuclide therapy using 177Lu and 90Y-labeled somatostatin analogs. J Nucl Med 46(Suppl 1):13S–17S

    PubMed  Google Scholar 

  35. Bodei L, Cremonesi M, Grana CM et al (2011) Peptide receptor radionuclide therapy with 177LuDOTATATE:The IEO phase I-II study. Eur J Nucl Med Mol Imaging 38:2125–2155

    Article  CAS  PubMed  Google Scholar 

  36. Felce A, Fraternali A, Frasoldati A et al (2012) Radiolabeled somatostatin analogues therapy in advanced neuroendocrine tumors: a single center experience. J Oncol 2012:320198

    Google Scholar 

  37. Oberg K (2012) Molecular imaging radiotherapy: theranostics for personalized patient management of neuroendocrine tumors (NETs). Theranostics 2:448–458

    Article  PubMed Central  PubMed  Google Scholar 

  38. Baum RP, Virgolini I, Ambrosin V et al (2010) Procedure guidelines for PET/CT tumor imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga_DOTA-TATE. Eur J Nucl Med Mol Imaging 37:2004–2010

    Article  PubMed  Google Scholar 

  39. Reubi JC (1995) In vitro identification of vasoactive intestinal peptide receptors in human tumors: implications for tumor imaging. J Nucl Med 36:1846–1853

    CAS  PubMed  Google Scholar 

  40. Virgolini I, Raderer M, Kurtaran A et al (1994) Vasoactive intestinal peptide-receptor imaging for the localization of intestinal adenocarcinomas and endocrine tumors. N Engl J Med 331:1116–1121

    Article  CAS  PubMed  Google Scholar 

  41. Katzenellenbogen JA (1995) Designing steroid receptor based radiotracers to image breast and prostate tumors. J Nucl Med 36(Suppl):8s–13s

    CAS  PubMed  Google Scholar 

  42. Rijks LJM, Boer GJ, Endert E et al (1996) The stereoisomers of 17 [-[123I]iodovinyloestradiol and its 11 q –methoxy derivative evaluated for their estrogen receptor binding in human MCF-7 cells and rat uterus, and their distribution in immature rats. Eur J Nucl Med 23:295–307

    Article  CAS  PubMed  Google Scholar 

  43. Wieland DM, Swanson DP, Brown LE, Beierwalters WH (1979) Imaging the adrenal medulla with an I-131-labeled anti-adrenergic agent. J Nucl Med 20:155–158

    CAS  PubMed  Google Scholar 

  44. Jaques S Jr, Tobes MC, Sisson JC, Baker JA, Wieland DM (1984) Comparison of sodium dependency of uptake of metaiodobenzylguanidine and norepinephrine into cultured bovine adrenomedullary cells. Mol Pharmacol 26:539–546

    CAS  PubMed  Google Scholar 

  45. Beierwalters WH, Weiland DM, Yu T, Swanson D, Mosley S (1978) Adrenal imaging agents. Rationale, synthesis, formulation and metabolism. Semin Nucl Med 8:5–21

    Article  Google Scholar 

  46. Gambhir SS, Barrio JR, Herschman HR et al (1996) Imaging gene expression: principles and assays. J Nucl Cardiol 6:219–233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elgazzar, A.H. (2014). Basis of Radiopharmaceutical Localization. In: Synopsis of Pathophysiology in Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-03458-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03458-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03457-7

  • Online ISBN: 978-3-319-03458-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics