Skip to main content

Basis of Therapeutic Nuclear Medicine

  • Chapter
  • First Online:
Synopsis of Pathophysiology in Nuclear Medicine
  • 915 Accesses

Abstract

Therapeutic applications of nuclear medicine are expanding (Table 14.1). The use of radioisotopes in therapy was limited predominantly to treatment of hyperthyroidism, thyroid cancer, and polycythemia rubra vera. Strontium-89 (89Sr), rhenium-186 (186Re), samarium-153 (153Sm), and tin-117m (117Sn) have been increasingly used recently in treating bone pain secondary to metastases. Additionally, treatment of certain neuroendocrine tumors with 131I-MIBG and labeled octreotide and pentreotide, the use of radiolabeled monoclonal antibodies for lymphomas, radionuclide synovectomy, and treatment of hepatic primary and metastatic lesions have revolutionized the field of therapeutic nuclear medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Demeter S, Leslie WD, Levin DP (2005) Radioactive iodine therapy for malignant and benign thyroid disease: a Canadian national survey of physician practice. Nucl Med Commun 26:613–621

    Article  PubMed  Google Scholar 

  2. McKenzie JM, Zakrija M, Sato A (1978) Humoral immunity in Graves’ disease. Clin Endocrinol Metab 7:31

    Article  CAS  PubMed  Google Scholar 

  3. DeNardo GL, O’Donnell RT, Oldham RK, DeNardo SJ (1998) A revolution in the treatment of non-Hodgkin’s lymphoma. Cancer Biother Radiopharm 13:213–223

    Article  CAS  PubMed  Google Scholar 

  4. Woeber KA (2000) Update on the management of hyperthyroidism and hypothyroidism. Arch Intern Med 160:1067–1071

    Article  CAS  PubMed  Google Scholar 

  5. Hamburger JI (1980) Evaluation of toxicity in solitary nontoxic autonomously functioning thyroid nodules. J Clin Endocrinol Metab 50:1089–1093

    Article  CAS  PubMed  Google Scholar 

  6. Peter HJ, Studer H, Forster T, Herber H (1982) The pathogenesis of “hot”and “cold”follicle in multinodular goiters. J Clin Endocrinol Metab 55:941–946

    Article  CAS  PubMed  Google Scholar 

  7. Ginsberg J (2003) Diagnosis and management of Grave’s disease. CMAJ 168:575–585

    PubMed Central  PubMed  Google Scholar 

  8. Bartalena L, Marcocci C, Bogazzi F, Manetti L, Tanda ML, Dell’Unto E et al (1998) Relation between therapy for hyperthyroidism and the course of Grave’s ophthalmopathy. N Engl J Med 338:73–78

    Article  CAS  PubMed  Google Scholar 

  9. Reid JR, Wheeler SF (2005) Hyperthyroidism: diagnosis and treatment. Am Fam Physician 72:623–630

    PubMed  Google Scholar 

  10. Perros P, Kendall-taylor P, Neoh C, Frewin S, Dickinson J (2005) A prospective study of the effects of radioiodine therapy for hyperthyroidism in patients with minimally active Grave’s ophthalmopathy. J Clin Endocrinol Metab 90:5321–5323

    Article  CAS  PubMed  Google Scholar 

  11. Maxon HR, Thomas SR, Chen IW (1981) The role of nuclear medicine in the treatment of hyperthyroidism and well differentiated thyroid adenocarcinoma. Clin Nucl Med 6:87–98

    Article  Google Scholar 

  12. Sankar R, Sekhri T, Sripathy G, Walia RP, Jain SK (2005) Radioactive iodine therapy in Grave’s hyperthyroidism: a prospective study from a tertiary referral center in North India. J Assoc Physicians India 53:603–606

    CAS  PubMed  Google Scholar 

  13. Lee SL (2012) Radioactive iodine therapy. Curr Opin Endocrinol Diabetes Obes 19(5):420–428

    Article  CAS  PubMed  Google Scholar 

  14. Weetman AP (2000) Grave’s disease. N Engl J Med 343:1236–1248

    Article  CAS  PubMed  Google Scholar 

  15. Terrier P, Sheng ZM, Schlumberger M et al (1988) Structure and expression of c-myc and c-fos proto-oncogenes in thyroid carcinomas. Oncogene 2:403

    Google Scholar 

  16. Lemoine NR, Mayall ES, Wyllie FS et al (1988) Activated ras oncogenes in human the thyroid cancers. Cancer Res 48:44–59

    Google Scholar 

  17. Atay-Rosenthal S (1999) Controversies on treatment of well-differentiated thyroid carcinoma and factors influencing prognosis. In: Freeman L (ed) Nuclear medicine annual. Lippincott/Williams and Wilkins, Philadelphia, pp 303–334

    Google Scholar 

  18. Beierwaltes WH (1978) The treatment of thyroid carcinoma with radioiodine. Semin Nucl Med 8:79

    Article  CAS  PubMed  Google Scholar 

  19. Rosario PW, Barroso AL, Rezende LI, Padrao EL, Fagundes TA, Reis JS, Purisch S (2005) Outcome of ablation of thyroid remnants with 100 mCi (3.7 GBq) iodine -131 in patients with thyroid cancer. Ann Nucl Med 19:247–250

    Article  PubMed  Google Scholar 

  20. Kolfuerest S, Igerc I, Lind P (2005) Recombinant human thyrotropin is helpful in the follow up and I-131 therapy of patients with thyroid cancer: a report of the results and benefits using recombinant thyrotropin in clinical routine. Thyroid 15:371–376

    Article  Google Scholar 

  21. Intenzo CM, Jabbour S, Dam HQ, Capuzzi DM (2005) Changing concepts in the management of differentiated thyroid cancer. Semin Nucl Med 35:257–265

    Article  PubMed  Google Scholar 

  22. Fujie S, Okumura Y, Sato S, Akaki S, Katsui K, Himei K, Takemoto M, Kanazawa S (2005) Diagnostic capabilities of I-131, Tl-201, and Tc99m MIBI scintigraphy for metastatic differentiated thyroid carcinoma after total thyroidectomy. Acta Med Okayama 59:99–107

    PubMed  Google Scholar 

  23. Ferreira SH, Lorenzethi BB, Bristow AF et al (1988) Interleukin-1 beta as a potent hyperalgesic agent antagonized by a tripeptide analogue. Nature 334:698–700

    Article  CAS  PubMed  Google Scholar 

  24. Poulson HS, Nielsen OS, Klee M et al (1989) Palliative irradiation of bone metastases. Cancer Treat Rev 16:41–48

    Article  Google Scholar 

  25. Tong D, Gillick L, Hendrickson FR (1982) Palliation of symptomatic osseous metastases. Cancer 50:893–899

    Article  CAS  PubMed  Google Scholar 

  26. Salazar OM, Rubin P, Hendrickson FR et al (1986) Single-dose half-body irradiation for palliation of multiple bone metastases from solid tumors. Final Radiation Therapy Oncology Group report. Cancer 58:29–36

    Article  CAS  PubMed  Google Scholar 

  27. Bauman G, Charette M, Reid R, Sathya J (2005) Radiopharmaceuticals for the palliation of painful bone metastasis-a systemic review. Radiother Oncol 75:258–270

    Article  CAS  PubMed  Google Scholar 

  28. Fischer M, Kampen WU (2012) Radionuclide therapy of bone metastases. Breast Care (Basel) 7:100–107

    Article  Google Scholar 

  29. Krishnamurthy GT, Krishnamurthy S (2000) Radionuclides for metastatic bone pain palliation: a need for rational re-evaluation in the new millennium [comment]. J Nucl Med 41:688–691

    CAS  PubMed  Google Scholar 

  30. Hoskin PJ, Ford HT, Harmer CL (1989) Hemibody irradiation (HBI) for metastatic bone pain in two histologically distinct groups of patients. Clin Oncol (R Coll Radiol) 1:67–69

    Article  CAS  Google Scholar 

  31. Fischer M (1998) I-131 therapy of neural crest tumors. Nucl Med Newslett (King Saud Univ) 5:9–10

    Google Scholar 

  32. Silberstein EB, Elgazzar AH, Kapilivsky A (1992) Phosphorus-32 radiopharmaceuticals for the treatment of painful osseous metastases. Semin Nucl Med 17:17–27

    Article  Google Scholar 

  33. Elgazzar AH, Maxon HR (1993) Radioisotope therapy for cancer related bone pain. Imaging Insights 2:1–6

    Google Scholar 

  34. Windsor PM (2001) Predictors of response to strontium-89 (Metastron) in skeletal metastases from prostate cancer: report of a single centre’s 10-year experience. Clin Oncol (R Coll Radiol) 13:219–227

    CAS  Google Scholar 

  35. Brady D, Parker CC, O’Sullivan JM (2013) Bone-targeting radiopharmaceuticals including radium-223. Cancer J 19:71–78

    Article  CAS  PubMed  Google Scholar 

  36. Sideras PA, Stavraka A, Gouliamos A, Limouris GS (2013) Radionuclide therapy of painful bone metastases–a comparative study between consecutive radionuclide infusions, combination with chemotherapy, and radionuclide infusions alone: an in vivo comparison of their effectiveness. Am J Hosp Palliat Care 30:745–751

    Article  PubMed  Google Scholar 

  37. Gelfand MJ, Elgazzar AH, Kriss VM et al (1994) Iodine-123 MIBG SPECT versus planar imaging in children with neural crest tumors. J Nucl Med 35:1753–1757

    CAS  PubMed  Google Scholar 

  38. Paltiel HJ, Gelfand MJ, Elgazzar AH, Washburn LC et al (1994) Neural crest tumors: I-123 MIBG imaging. Radiology 190:117–121

    CAS  PubMed  Google Scholar 

  39. Gulenchyn KY, Yaoy X, Asa SL, Singh S, Law C (2012) Radionuclide therapy in neuroendocrine tumours: a systematic review. Clin Oncol 24:294–308

    Article  CAS  Google Scholar 

  40. Press OW, Eary JF, Applelbaum FR, Martin PJ, Badger CC, Nelp WB, Glenn S, Buchko GM, Fisher LD, Porter B et al (1993) Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med 329:1219–1224

    Article  CAS  PubMed  Google Scholar 

  41. Press OW, Eary JF, Applbaum FR, Martin PJ, Nelp WB, Glenn S, Fisher DR et al (1995) Phase II trial of I-131-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet 346:336–340

    Article  CAS  PubMed  Google Scholar 

  42. De Nardo GL, De Nardo SJ, O’Grady LF, Levy NB, Adams GP, Mills SL (1990) Fractionated radioimmunotherapy of B-cell malignancies with I-131-Lym-1. Cancer Res 50:1014–1016

    Google Scholar 

  43. Morschhauser F, Radford J, Van Hoof A, Botto B, Rohatiner AZS, Salles G, Soubeyran P, Tilly H, Bischof-Delaloye A, van Putten WLJ, Kylstra JW, Hagenbeek A (2013) 90Yttrium-Ibritumomab tiuxetan consolidation of first remission in advanced-stage follicular non-Hodgkin lymphoma: updated results after a median follow-Up of 7.3 years from the International, Randomized, Phase III First-Line Indolent trial. J Clin Oncol 31:1977–1983

    Article  CAS  PubMed  Google Scholar 

  44. Deutsch E, Brodack JW, Deutsch KF (1993) Radiation synovectomy revisited. Eur J Nucl Med 20:1113–1127

    Article  CAS  PubMed  Google Scholar 

  45. Gschwend N (1989) Synovectomy. In: Kelly WN, Harris ED, Ruddy S (eds) Textbook of rheumatology. Saunders, Philadelphia, pp 1934–1961

    Google Scholar 

  46. Fischer M, Modder G (2002) Radionuclide therapy of inflammatory joint disease. Nucl Med Commun 23:829–831

    Article  PubMed  Google Scholar 

  47. Sundram FX, Jiomg JM, Zanzonico P, Bernal P, Chau T, Onkhuudai P, Divgi C, Knapp FF Jr, Padhy AK (2002) Trans-arterial rhenium-188 lipiodol in the treatment of inoperable hepatocellular carcinoma – results of a multi-centre phase-1 study. World J Nucl Med 1:5–11

    Google Scholar 

  48. Hauss F (1992) Radiosynoviorthese in der Orthopadie. Akt Rheumatol 17:64–66

    Article  Google Scholar 

  49. Padhy AK (2013). Rhenium-188 Lipiodol for the Treatment of Hepatocellular Carcinoma (HCC). In: A. Adam, R.F. Dondelingar, P.R. Mueller (Eds.) Interventional Radiology in Cancer, Springer, Berlin

    Google Scholar 

  50. Nijsen JF, van het Schip AD, Hennink WE, Rook DW, van Rijk PP, de Klerk JM (2002) Advances in nuclear oncology: microspheres for internal radionuclide therapy of liver tumours. Curr Med Chem 9:73–82

    Article  CAS  PubMed  Google Scholar 

  51. Van de Wiele C, Maes A, Brugman E, D’Asseler Y, De Spiegeleer B, Mees G, Stellamans K (2012) SIRT of liver metastases: physiological and pathophysiological considerations. Eur J Nucl Med Mol Imaging 39(10):1646–1655

    Article  CAS  PubMed  Google Scholar 

  52. Jong M, Kwekkeboom D, Volkema R, Krenning ER (2003) Radiolabelled peptides for tumor therapy: current status and future directions. Eur J Nucl Med 30:463–469

    Article  Google Scholar 

  53. Capello A, Krenning E, Bernard B, Reubi J, Beerman W, de Jong M (2005) In-111-labelled somatostatin analogues in a rat tumour model: somatostatin receptor status and effects of peptide receptor radionuclide therapy. Eur J Nucl Med Mol Biol 32:1288–1295

    Article  CAS  Google Scholar 

  54. Zaknun JJ, Bodei L, Mueller-Brand J, Pavel ME, Baum RP, Hörsch D, O’Dorisio MS, O’Dorisiol TM, Howe JR, Cremonesi M, Kwekkeboom DJ (2013) The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 40:800–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Kvinnsland Y, Skretting A, Bruland OS (2001) Radionuclide therapy with bone- seeking compounds: Monte Carlo calculations of dose-volume histograms for bone marrow in trabecular bone. Phys Med Biol 46:1149–1161

    Article  CAS  PubMed  Google Scholar 

  56. Rindi G (2010) The ENETS guidelines: the new TNM classification system. Tumori 96:806–809

    PubMed  Google Scholar 

  57. Sansovini M, Severi S, Ambrosetti A, Monti M, Nanni O, Sarnelli A, Bodei L, Garaboldi L, Bartolomei M, Paganelli G (2013) Treatment with the radiolabelled somatostatin analog 177Lu-DOTATATE for advanced pancreatic neuroendocrine tumors. Neuroendocrinology 97:347–354

    Article  CAS  PubMed  Google Scholar 

  58. Pfeifer AK, Gregersen T, Grønbæk H, Hansen CP, Müller-Brand J, Herskind Bruun K, Krogh K, Kjær A, Knigge U (2011) Peptide receptor radionuclide therapy with 90 Y-DOTATOC and 177 Lu-DOTATOC in advanced neuroendocrine tumors: results from a Danish Cohort Treated in Switzerland. Neuroendocrinology 93:189–196

    Article  CAS  PubMed  Google Scholar 

  59. Sciuto R, Festa A, Rea S et al (2002) Effects of lowdose cisplatin on Sr-89 therapy for painful bone metastases from prostate cancer: a randomized clinical trial. J Nucl Med 43:79–86

    CAS  PubMed  Google Scholar 

  60. Mastrangelo S, Tornesello A, Diociaiuti L et al (2001) Treatment of advanced neuroblastoma; feasibility and therapeutic potential chemotherapeutic potential of a novel approach combining I-131-MIBG and multiple drug chemotherapy. Br J Cancer 84:460–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Yanik GA, Levine JE, Matthay KK et al (2002) Pilot study of iodine -131-metaiodobenzylguanidine in combination with myeloablative chemotherapy and autologous stem-cell support for the treatment of neuroblastoma. J Clin Oncol 20:2142–2149

    Article  CAS  PubMed  Google Scholar 

  62. Grana C, Chinol M, Robertson C et al (2002) Pretargeted adjunct radioimmunotherapy with yttrium-90-biotin in malignant glioma patients: a pilot study. Br J Cancer 86:207–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Bodey RK, Evans PM, Flux GD (2005) Targeted radionuclide therapy. Spatial aspects of combined modality radiotherapy. Radiother Oncol 77:301–309

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elgazzar, A.H. (2014). Basis of Therapeutic Nuclear Medicine. In: Synopsis of Pathophysiology in Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-03458-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03458-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03457-7

  • Online ISBN: 978-3-319-03458-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics