Advertisement

A Delay Fractioning Approach to Global Synchronization of Delayed Complex Networks with Neutral-Type Coupling

  • Hongli Wu
  • Ya-peng Zhao
  • Huan-huan Mai
  • Zheng-xia Wang
Chapter
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 254)

Abstract

The global issues of synchronization of complex networks with neutral-type coupling are investigated in this chapter, which is not adequately considered in existing literatures. Based on these new complex models, we derive asymptotical and exponential criterions via delay fraction approach. Numerical examples are then given to illustrate the effectiveness of our scheme and to compare with the recent proposals. We also make (some) attempts to explore the relationship between delay fraction numbers and the conservatism of our criterions.

Keywords

Synchronization Complex networks Neutral-type coupling Delay fractioning 

Notes

Acknowledgments

Thanks to the support by National Natural Science Foundation (61363032). And this work is supported by International Science & Technology Cooperation Program of China (2012DFA1127); Hainan International Cooperation Key Project(GJXM201105).

References

  1. 1.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  2. 2.
    Li, Z., Chen, G.: Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans. CAS-II 53, 28–33 (2006)Google Scholar
  3. 3.
    Lu, W., Chen, T.: Synchronization analysis of linearly coupled networks of discrete time systems. Phys. D 198, 148–168 (2004)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Wang, X.F., Chen, G.: Synchronization in scale-free dynamical networks: Robustness and fragility. IEEE Trans. CAS-II 49, 54–62 (2002)CrossRefGoogle Scholar
  5. 5.
    Li, C., Chen, G.: Synchronization in general complex dynamical networks with coupling delays. Phys. A 343, 263–278 (2004)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Li, K., Guan, S., Gong, X., Lai, C.H.: Synchronization stability of general complex dynamical networks with time-varying delays. Phys. Lett. A 372, 7133–7139 (2008)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Li, P., Yi, Z.: Synchronization analysis of delayed complex networks with time-varying couplings. Phys. A 387, 3729–3737 (2008)CrossRefGoogle Scholar
  8. 8.
    Tu, L., Lu, J.-A.: Delay-dependent synchronization in general complex delayed dynamical networks. Comput. Math. Appl. 57, 28–36 (2009)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Wang, Y., Wang, Z., Liang, J.: A delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances. Phys. Lett. A 372, 6066–6073 (2008)CrossRefMATHGoogle Scholar
  10. 10.
    Wen, S., Chen, S., Guo, W.: Adaptive global synchronization of a general complex dynamical network with non-delayed and delayed coupling. Phys. Lett. A 372, 6340–6346 (2008)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Dai, Y., Cai, Y., Xu, X.: Synchronization criteria for complex dynamical networks with neutral-type coupling delay. Phys. A 387, 4673–4682 (2008)CrossRefGoogle Scholar
  12. 12.
    Solís-Perales, G., Ruiz-Velázquez, E., Valle-Rodríguez, D.: Synchronization in complex networks with distinct chaotic nodes. Commun. Nonlinear Sci. Numer. Simul 14(6):2528–2535 (2009)Google Scholar
  13. 13.
    Gu, K.Q., Kharitonov, V.L., Chen, J.: Stability of Time-Delay Systems. Birkhauser, Boston (2003)CrossRefMATHGoogle Scholar
  14. 14.
    Boyd, S., ElGhaoui, L., Feron, E., Balakrishnan, A.V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hongli Wu
    • 1
  • Ya-peng Zhao
    • 2
  • Huan-huan Mai
    • 3
  • Zheng-xia Wang
    • 4
  1. 1.College of Information and TechnologyHainan Normal UniversityHaikouChina
  2. 2.Institute of Intelligent Manufacturing and ControlWuhan University of TechnologyWuhanPeople’s Republic of China
  3. 3.College of Computer ScienceChongqing UniversityChongqingChina
  4. 4.Department of Information and Computing ScienceChongqing Jiaotong UniversityChongqingChina

Personalised recommendations