Metadata, Domain Specific Languages and Visualisations as Internal Artifacts Driving an Agile Knowledge Engineering Methodology

  • Angelos Yannopoulos
  • Yannis Christodoulou
  • Effie Bountris
  • Katia Savrami
  • Maria Douza
Part of the Communications in Computer and Information Science book series (CCIS, volume 390)


We introduce M(krDSL), an agile Knowledge Engineering methodology. It addresses the Knowledge Acquisition bottleneck. The point of differentiation of M(krDSL) from previous practice involves knowledge engineers and domain experts collaborating extremely closely: “The domain expert constructs the model. The model is independently useful as a communication tool.” We introduce two additional layers of abstraction between human domain experts and operational software: a shared Knowledge Model of the domain, and Visualisation mockups/prototypes. Tools of the methodology include: DSLs and graphical representations; Qualitative analysis of the DSLs; Semantic Metadata for Test Driven Design; and analysis of concurrently evolving Visualisation output mockups/prototypes. In our experience, following this methodology helped us escape from situations where we had completely ceased to be able to make any modelling progress at all, while even at times when we were able to make easy progress in our KE tasks, M(krDSL) gave us a high degree of confidence in the correct prioritisation and correct results of our work.


Domain Expert Semantic Model Knowledge Model Knowledge Engineer SPARQL Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International Journal on Semantic Web and Information Systems (IJSWIS) 5(3), 1–22 (2009)CrossRefGoogle Scholar
  2. 2.
    Boulos, M.N.K.: Semantic Wikis: A comprehensible introduction with examples from the health sciences. Journal of Emerging Technologies in Web Intelligence 1(1), 94–96 (2009)CrossRefGoogle Scholar
  3. 3.
    Cardoso, J.: The semantic web vision: Where are we? IEEE Intelligent Systems 22(5), 84–88 (2007)CrossRefGoogle Scholar
  4. 4.
    Schreiber, G., et al.: CommonKADS: A comprehensive methodology for KBS development. IEEE Expert 9(6), 28–37 (1994)CrossRefGoogle Scholar
  5. 5.
    Blázquez, J., et al.: Building ontologies at the knowledge level using the ontology design environment. In: 11th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW 1998), Banff, Alberta, Canada, April 18-23 (1998)Google Scholar
  6. 6.
    Pinto, H.S., Staab, S., Tempich, C.: DILIGENT: Towards a fine-grained methodology for Distributed, Loosely-controlled and evolving Engineering of Ontologies. In: ECAI, vol. 16 (2004)Google Scholar
  7. 7.
    Kotis, K., Vouros, G.A.: Human-centered ontology engineering: The HCOME methodology. Knowledge and Information Systems 10(1), 109–131 (2006)CrossRefGoogle Scholar
  8. 8.
    De Nicola, A., Missikoff, M., Navigli, R.: A software engineering approach to ontology building. Information Systems 34(2), 258–275 (2009)CrossRefGoogle Scholar
  9. 9.
    Auer, S., Herre, H.: RapidOWL—An Agile Knowledge Engineering Methodology. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 424–430. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Presutti, V., et al.: Pattern-Based Ontology Design. Ontology Engineering in a Networked World, pp. 35–64. Springer, Heidelberg (2012)Google Scholar
  11. 11.
    Knublauch, H.: Extreme programming of knowledge-based systems. In: Research Institute for Applied Knowledge Processing (FAW), Conference Proceedings from eXtreme Programming and Agile Processes in Software Engineering (XP 2002), Alghero, Sardinia, Italy (2002)Google Scholar
  12. 12.
    Compton, P.: Situated cognition and knowledge acquisition research. International Journal of Human-Computer Studies 71(2), 184–190 (2013)CrossRefGoogle Scholar
  13. 13.
    Wickler, G., Tate, A., Hansberger, J.: Using shared procedural knowl-edge for virtual collaboration support in emergency management. IEEE Intelligent Systems (2013)Google Scholar
  14. 14.
    Musen, M.A.: The knowledge acquisition workshops: A remarkable convergence of ideas. International Journal of Human-Computer Studies (2012)Google Scholar
  15. 15.
    Schreiber, G.: Knowledge engineering and management: the Common KADS methodology. The MIT Press (2000)Google Scholar
  16. 16.
    Cockburn, A.: Crystal clear: a human-powered methodology for small teams. Addison-Wesley Professional (2005)Google Scholar
  17. 17.
    Sure, Y., Staab, S., Studer, R.: Ontology engineering methodology. In: Handbook on Ontologies, pp. 135–152. Springer, Heidelberg (2009)Google Scholar
  18. 18.
    Sure, Y., Angele, J., Staab, S.: OntoEdit: Guiding ontology development by methodology and inferencing. In: Meersman, R., Tari, Z. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS, vol. 2519, pp. 1205–1222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Dombeu, F., Vincent, J., Huisman, M.: Semantic-Driven e-Government: Ap-plication of Uschold and King Ontology Building Methodology for Semantic Ontology Models Development. arXiv preprint arXiv:1111.1941 (2011)Google Scholar
  20. 20.
    Waterman, D.A.: A guide to expert systems. Addison-Wesley, Reading (1986)Google Scholar
  21. 21.
    Wagner, C.: End-users as expert system developers. Journal of End User Computing 12(3), 3–13 (2000)CrossRefGoogle Scholar
  22. 22.
    Wagner, C.: Breaking the knowledge acquisition bottleneck through conversational knowledge management. Information Resources Management Journal (IRMJ) 19(1), 70–83 (2006)CrossRefGoogle Scholar
  23. 23.
    Fowler, M.: Domain-specific languages. Pearson Education (2010)Google Scholar
  24. 24.
    Fowler, M.: Patterns of enterprise application architecture. Addison-Wesley Longman Publishing Co., Inc. (2002)Google Scholar
  25. 25.
    Völter, M.: DSL Engineering: Designing, Implementing and Using Domain-specific Languages. CreateSpace Independent Publishing Platform (2013)Google Scholar
  26. 26.
    Jones, S.P., Eber, J.-M., Seward, J.: Composing contracts: an ad-venture in financial engineering (functional pearl). ACM SIGPLAN Notices 35(9) (2000)Google Scholar
  27. 27.
    Thomas, D., Barry, B.M.: Model driven development: the case for domain oriented programming. In: Companion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications. ACM (2003)Google Scholar
  28. 28.
    Flouris, G., Cigni, R.: Groovy Solutions for Data Flows. Presentation Given at Groovy & Grails eXchange, London, December 16-17 (2010)Google Scholar
  29. 29.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. No. ICS-8506. San Diego La Jolla Inst for Cognitive Science, California Univ. (1985)Google Scholar
  30. 30.
    Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal 37(2), 233–243 (1991)CrossRefGoogle Scholar
  31. 31.
    Eppler, M.J.: What is an effective knowledge visualization? Insights from a review of seminal concepts. In: Knowledge Visualization Currents, pp. 3–12. Springer, London (2013)CrossRefGoogle Scholar
  32. 32.
    Yannopoulos, A.: DirectorNotation: Artistic and technological system for professional film directing. Journal on Computing and Cultural Heritage (JOCCH) 6(1), 2 (2013)Google Scholar
  33. 33.
    Yannopoulos, A., et al.: ANSWER: Documentation, formal conceptualisation and annotation of new media. In: Adjunct Proceedings of EuroITV 2009, Leuven, Belgium, June 3-5 (2009)Google Scholar
  34. 34.
    Beales, R., et al.: Automated 3d previs for modern production. In: International Broadcasting Convention (IBC) 2009, Amsterdam, September 10-15 (2009)Google Scholar
  35. 35.
    Chakravarthy, A., et al.: ANSWER: a semantic approach to film direction. In: Fourth International Conference on Internet and Web Applications and Services, ICIW 2009. IEEE (2009)Google Scholar
  36. 36.
    Chakravarthy, A., et al.: A Notation Based Approach To Film Pre-vis. In: 2010 Conference on Visual Media Production (CVMP). IEEE (2010)Google Scholar
  37. 37.
    Mavrogeorgi, N., et al.: Reasoner system for video creation having as input a conceptual video description. In: 2011 IEEE Workshop on Computational Intelligence for Visual Intelligence (CIVI). IEEE (2011)Google Scholar
  38. 38.
    Jung, Y., et al.: Storyboarding and pre-visualization with x3d. In: Proceedings of the 15th International Conference on Web 3D Technology. ACM (2010)Google Scholar
  39. 39.
    Mavrogeorgi, N., Christodoulou, Y., Kalogirou, P.: Semi-automatic Film-Direction Technique in Internet-Based Interactive Entertainment. In: Third International Conference on Internet and Web Applications and Services, ICIW 2008. IEEE (2008)Google Scholar
  40. 40.
    Nikoletta, M., Christodoulou, Y.: Complete, cinematic and expressive presentation in computer game. In: Proceedings of the 1st International Conference on Pervasive Technologies Related to Assistive Environments. ACM (2008)Google Scholar
  41. 41.
    Christodoulou, Y., Mavrogeorgi, N., Kalogirou, P.: Use of Ontologies for Knowledge Representation of a Film Scene. In: Third International Conference on Internet and Web Applications and Services, ICIW 2008. IEEE (2008)Google Scholar
  42. 42. (retrieved August 20, 2013)
  43. 43.
    Moody, D.: “The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Transactions on Software Engineering 35(6), 756–779 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Angelos Yannopoulos
    • 1
  • Yannis Christodoulou
    • 1
  • Effie Bountris
    • 1
  • Katia Savrami
    • 1
  • Maria Douza
    • 1
  1. 1.Department of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations