The Semantics of Negation Detection in Archaeological Grey Literature

  • Andreas Vlachidis
  • Douglas Tudhope
Part of the Communications in Computer and Information Science book series (CCIS, volume 390)


Archaeological reports contain a great deal of information that conveys facts and findings in different ways. This kind of information is highly relevant to the research and analysis of archaeological evidence but at the same time can be a hindrance for the accurate indexing of documents with respect to positive assertions. The paper presents a method for adapting the biomedicine oriented negation algorithm NegEx to the context of archaeology and discusses the evaluation results of the new modified negation detection module. The performance of the module is compared against a “Gold Standard” and evaluation results are encouraging, delivering overall 89% Precision, 80% Recall and 83% F-Measure scores. The paper addresses limitations and future improvements of the current work and highlights the need for ontological modelling to accommodate negative assertions. It concludes that adaptation of the NegEx algorithm to the archaeology domain is feasible and that rule-based information extraction techniques are capable of identifying a large portion of negated phrases from archaeological grey literature.


Negation Detection Semantic Technologies Digital Humanities CIDOC-CRM Semantic Annotation Natural Language Processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O’Hara, K., Berners-Lee, T., Hall, W., Shadbolt, N.: Use of the Semantic Web in e-Research. The MIT Press, Cambridge (2010)Google Scholar
  2. 2.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)CrossRefGoogle Scholar
  3. 3.
    Horn, L.R.: A Natural History of Negation. University of Chicago Press, Chicago (1989)Google Scholar
  4. 4.
    Westbury, C.: Just say no: The evolutionary and developmental significance of negation in behavior and natural language. In: 3rd Conference The Evolution of Language, Paris (2000)Google Scholar
  5. 5.
    Blanco, E., Moldovan, D.: Semantic representation of negation using focus detection. In: 49th Annual Meeting of the Association for Computational Linguistics, Portland (2011)Google Scholar
  6. 6.
    Chapman, W.W., Bridewell, W., Hanbury, P., Cooper, G.F., Buchanan, B.G.: A Simple Algorithm for Identifying Negated Findings and Diseases in Discharge Summaries. Journal of Biomedical Informatics 34(5), 301–310 (2001)CrossRefGoogle Scholar
  7. 7.
    Maynard, D., Funk, A.: Automatic detection of political opinions in tweets. In: García-Castro, R., Fensel, D., Antoniou, G. (eds.) ESWC 2011. LNCS, vol. 7117, pp. 88–99. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Goryachev, S., Sordo, M., Zeng, Q.T., Ngo, L.: Implementation and evaluation of four different methods of negation detection. Technical report. Harvard Medical School (2006)Google Scholar
  9. 9.
    Vlachidis, A., Tudhope, D.: A pilot investigation of information extraction in the semantic annotation of archaeological reports. International Journal of Metadata, Semantics and Ontologies 7(3), 222–235 (2012)CrossRefGoogle Scholar
  10. 10.
    Falkingham, G.: A whiter shade of grey: A new approach to archaeological grey literature using the XML version of the TEI guidelines. Internet Archaeology 17 (2005),
  11. 11.
    Vlachidis, A.: Semantic Indexing Via Knowledge Organisation Resources: Applying the CIDOC-CRM to Archaeological. PhD Thesis, University of Glamorgan, UK (2012)Google Scholar
  12. 12.
    Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E., Ciravegna, F.: Semantic annotation for knowledge management: Requirements and a survey of the state of the art. Web Semantics: Science, Services and Agents on the WWW 4(1), 14–28 (2006)CrossRefGoogle Scholar
  13. 13.
    Crofts, N., Doerr, M., Gill, T., Stead, S., Stiff, M.: Definition of the CIDOC Conceptual Reference Model,
  14. 14.
    Tudhope, D., May, K., Binding, C., Vlachidis, A.: Connecting archaeological data and grey literature via semantic cross search. Internet Archaeology 30 (2011),
  15. 15.
    Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticae Investigationes 30(1), 3–26 (2007)CrossRefGoogle Scholar
  16. 16.
    Ruch, P., Baud, R., Geissbuhler, A., Rassinoux, A.M.: Comparing general and medical texts for information retrieval based on natural language processing: An inquiry into lexical disambiguation. Med-info. 10, 261–265 (2001)Google Scholar
  17. 17.
    Miller, G.A.: WordNet: A Lexical Database for English. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  18. 18.
    Grishman, R., Sundheim, B.: Message Understanding Conference-6: A brief history. In: 16th International Conference on Computational Linguistics, Copenhagen (1996)Google Scholar
  19. 19.
    Doerr, M., Kritsotaki, A., Boutsika, K.: Factual argumentation-a core model for assertions making. Journal on Computing and Cultural Heritage 3(3), 1–34 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andreas Vlachidis
    • 1
  • Douglas Tudhope
    • 1
  1. 1.Hypermedia Research UnitUniversity of South WalesPontypridd WalesUK

Personalised recommendations