Leveraging Semantics to Represent and Compute Quantitative Indexes: The RDFIndex Approach

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 390)


The compilation of key performance indicators (KPIs) in just one value is becoming a challenging task in certain domains to summarize data and information. In this context, policymakers are continuously gathering and analyzing statistical data with the aim of providing objective measures about a specific policy, activity, product or service and making some kind of decision. Nevertheless existing tools and techniques based on traditional processes are preventing a proper use of the new dynamic and data environment avoiding more timely, adaptable and flexible (on-demand) quantitative index creation. On the other hand, semantic-based technologies emerge to provide the adequate building blocks to represent domain-knowledge and process data in a flexible fashion using a common and shared data model. That is why a RDF vocabulary designed on the top of the RDF Data Cube Vocabulary to model quantitative indexes is introduced in this paper. Moreover a Java and SPARQL based processor of this vocabulary is also presented as a tool to exploit the index meta-data structure and automatically perform the computation process to populate new values. Finally some discussion, conclusions and future work are also outlined.


Resource Description Framework Smart City Quantitative Index Ordered Weighted Average SPARQL Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adida, B., Birbeck, M.: RDFa Primer, Bridging the Human and Data Webs. W3C Working Group Note, W3C (2008),
  2. 2.
    Bizer, C., Cyganiak, R.: Quality-driven information filtering using the WIQA policy framework. Web Semant. 7(1), 1–10 (2009)CrossRefGoogle Scholar
  3. 3.
    Bosch, T., Cyganiak, R., Gregory, A., Wackerow, J.: DDI-RDF discovery vocabulary. a metadata vocabulary for documenting research and survey data. In: 6th Workshop on Linked Data on the Web (LDOW 2013) (2013)Google Scholar
  4. 4.
    SDMX consortium. SDMX - Metadata Common Vocabulary. SDMX Consortium (UNECE) 2009,
  5. 5.
    Cyganiak, R., Reynolds, D.: The RDF Data Cube Vocabulary. Working Draft, W3C (2013),
  6. 6.
    Dadzie, A.-S., Rowe, M.: Approaches to visualising Linked Data: A survey. Semantic Web 2(2), 89–124 (2011)Google Scholar
  7. 7.
    Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C.: Publishing open statistical data: The spanish census. In: DG.O, pp. 20–25 (2011)Google Scholar
  8. 8.
    Hausenblas, M., Halb, W., Raimond, Y., Feigenbaum, L., Ayers, D.: SCOVO: Using Statistics on the Web of Data. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 708–722. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Hogan, A., Harth, A., Umbrich, J., Kinsella, S., Polleres, A., Decker, S.: Searching and Browsing Linked Data with SWSE: The Semantic Web Search Engine. Journal of Web Semantics, JWS (2011) (accepted) (in press)Google Scholar
  10. 10.
    Hogan, A., Pan, J.Z., Polleres, A., Decker, S.: SAOR: Template Rule Optimisations for Distributed Reasoning over 1 Billion Linked Data Triples. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 337–353. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Maali, F., Cyganiak, R.: Re-using Cool URIs: Entity Reconciliation Against LOD Hubs. Library 8 (2011)Google Scholar
  12. 12.
    Moreau, L., Missier, P.: The PROV Data Model and Abstract Syntax Notation. W3C Working Draft, W3C (2011),
  13. 13.
    Rodríguez, J.M.A., Clement, J., Gayo, J.E.L., Farhan, H., De Pablos, P.O.: Publishing Statistical Data following the Linked Open Data Principles: The Web Index Project, pp. 199–226. IGI Global (2013)Google Scholar
  14. 14.
    Salas, P.E.R., Da Mota, F.M., Breitman, K.K., Casanova, M.A., Martin, M., Auer, S.: Publishing Statistical Data on the Web. Int. J. Semantic Computing 6(4), 373–388 (2012)CrossRefGoogle Scholar
  15. 15.
    Zapilko, B., Mathiak, B.: Defining and Executing Assessment Tests on Linked Data for Statistical Analysis. In: COLD (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.South East European Research CenterThessalonikiGreece
  2. 2.WESO Research Group, Department of Computer ScienceUniversity of OviedoOviedoSpain

Personalised recommendations