Advertisement

Uniform Distribution Modulo One

  • Gunther Leobacher
  • Friedrich Pillichshammer
Chapter
  • 1.9k Downloads
Part of the Compact Textbooks in Mathematics book series (CTM)

Abstract

The theory of Uniform Distribution Modulo One is a branch of Number Theory which goes back to the seminal work of H. Weyl from 1916. For us the main motivation to study this topic lies in its application for numerical integration based on QMC rules.

Keywords

Infinite Sequence Regular Lattice Star Discrepancy Pairwise Coprime Halton Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 5.
    Atanassov, E.I.: On the discrepancy of the Halton sequences. Math. Balkanica (N.S.) 18, 15–32 (2004)Google Scholar
  2. 7.
    Beck, J., Chen, W.W.L.: Irregularities of Distribution. Cambridge University Press, Cambridge (1987)CrossRefzbMATHGoogle Scholar
  3. 8.
    Bilyk, D., Lacey, M.: The supremum norm of the discrepancy function: recent results and connections. In: Dick, J., Kuo, F.Y., Peters, G.W., Sloan I.H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, pp. 23–28. Springer, Berlin/Heidelberg/New York (2013)CrossRefGoogle Scholar
  4. 13.
    Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  5. 14.
    Cochrane, T.: Trigonometric approximation and uniform distribution modulo one. Proc. Am. Math. Soc. 103, 695–702 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 18.
    Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  7. 19.
    Dick, J., Pillichshammer, F.: Explicit constructions of point sets and sequences with low discrepancy. In: Kritzer, P., Niederreiter, H., Pillichshammer, F., Winterhof, A. (eds.) Uniform Distribution and Quasi-Monte Carlo Methods. Discrepancy, Integration and Applications, pp. 63–86. De Gruyter, Berlin (2014)Google Scholar
  8. 24.
    Doerr, C., Gnewuch, M., Wahlström, M.: Calculation of discrepancy measures and applications. In: Chen, W.W.L., Srivastav, A., Travaglini, G. (eds.) Panorama of Discrepancy Theory, pp. 587–644. Springer (2014)Google Scholar
  9. 25.
    Drmota, M., Tichy, R.F.: Sequences, Discrepancies and Applications. Lecture Notes in Mathematics, vol. 1651. Springer, Berlin (1997)Google Scholar
  10. 43.
    Hlawka, E.: Theorie der Gleichverteilung. Bibliographisches Institut, Mannheim (1979)zbMATHGoogle Scholar
  11. 46.
    Hua, L.K., Wang, Y.: Applications of Number Theory to Numerical Analysis. Springer, Berlin/Heidelberg/New York (1981)zbMATHGoogle Scholar
  12. 56.
    Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974)zbMATHGoogle Scholar
  13. 61.
    Lemieux, C.: Monte-Carlo and Quasi-Monte Carlo Sampling. Springer Series in Statistics. Springer, New York (2009)zbMATHGoogle Scholar
  14. 65.
    Matoušek, J.: Geometric Discrepancy. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  15. 69.
    Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Number 63 in CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia (1992)Google Scholar
  16. 84.
    Schmid, W.C.: Projections of digital nets and sequences. Math. Comput. Simul. 55, 239–247 (2001)CrossRefzbMATHGoogle Scholar
  17. 95.
    Weyl, H.: Über die Gleichverteilung mod. Eins. Math. Ann. 77, 313–352 (1916). (German)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gunther Leobacher
    • 1
  • Friedrich Pillichshammer
    • 2
  1. 1.Institute of Financial MathematicsUniversity of LinzLinzAustria
  2. 2.University of LinzLinzAustria

Personalised recommendations