Advertisement

Computational Discourse Analysis

  • Mihai Dascalu
Part of the Studies in Computational Intelligence book series (SCI, volume 534)

Abstract

As previous chapters were overall oriented towards comprehension and productions from the perspectives of individual and collaborative learning, this chapter is focused on presenting automatic discourse analysis models and natural language processing techniques that ground a computational and quantifiable perspective of cohesion and coherence and that greatly impact the underlying functionalities of our developed systems (A.S.A.P., Ch.A.M.P., PolyCAFe and ReaderBench).

Keywords

Semantic Similarity Latent Dirichlet Allocation Latent Semantic Analysis Semantic Distance Word Sense Disambiguation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, P.H., Martell, C.H.: Topic Detection and Extraction in Chat. In: IEEE Int. Conf. on Semantic Computing (ICSC 2008), pp. 581–588. IEEE, Santa Clara (2008)Google Scholar
  2. Agirre, E., Lopez, O.: Clustering WordNet Word Senses. In: Conference on Recent Advances on Natural Language (RANLP 2003), pp. 121–130. ACL, Borovetz (2003)Google Scholar
  3. Arora, R., Ravindran, B.: Latent dirichlet allocation based multi-document summarization. In: 2nd Workshop on Analytics for Noisy Unstructured Text Data, Singapore, pp. 91–97. ACM (2008), doi:10.1145/1390749.1390764Google Scholar
  4. Bakhtin, M.M.: The dialogic imagination: Four essays (trans: Emerson C, Holquist M). The University of Texas Press, Austin (1981)Google Scholar
  5. Bakhtin, M.M.: Problems of Dostoevsky’s poetics (trans: Emerson C). University of Minnesota Press, Minneapolis (1984)Google Scholar
  6. Bakhtin, M.M.: Speech genres and other late essays (trans: McGee VW). University of Texas, Austin (1986)Google Scholar
  7. Banerjee, S., Pedersen, T.: An Adapted Lesk Algorithm for Word Sense Disambiguation using WordNet. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 136–145. Springer, Heidelberg (2002)Google Scholar
  8. Barzilay, R., Elhadad, M.: Using lexical chains for text summarization. In: ACL Workshop on Intelligent Scalable Text Summarization (ISTS 1997), pp. 10–17. ACL, Madrid (1997)Google Scholar
  9. Berry, M.W., Drmac, Z., Jessup, E.R.: Matrices, vector spaces, and information retrieval. SIAM Review 41(2), 335–362 (1999)MathSciNetzbMATHGoogle Scholar
  10. Berry, M.W., Dumais, S.T., O’Brien, G.W.: Using linear algebra for intelligent information retrieval. SIAM Review 37, 573–595 (1995)MathSciNetzbMATHGoogle Scholar
  11. Bestgen, Y.: Évaluation automatique de textes et cohésion lexicale. Discours 11 (2012), doi:10.4000/discours.8724Google Scholar
  12. Blei, D.M., Lafferty, J.: Topic Models. In: Srivastava, A., Sahami, M. (eds.) Text Mining: Classification, Clustering, and Applications. CRC Data Mining and Knowledge Discovery, pp. 71–93. Chapman & Hall/CRC, London (2009)Google Scholar
  13. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Journal of Machine Learning Research 3(4-5), 993–1022 (2003)zbMATHGoogle Scholar
  14. Budanitsky, A., Hirst, G.: Semantic distance in WordNet: An experimental, application-oriented evaluation of five measures. In: Workshop on WordNet and other Lexical Resources, Second Meeting of the North American Chapter of the Association for Computational Linguistics, Pittsburgh, PA, pp. 29–34 (2001)Google Scholar
  15. Budanitsky, A., Hirst, G.: Evaluating WordNet-based Measures of Lexical Semantic Relatedness. Computational Linguistics 32(1), 13–47 (2006)zbMATHGoogle Scholar
  16. Cha, S.H.: Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions. International Journal of Mathematical Models and Methods in Applied Sciences 1(4), 300–307 (2007)MathSciNetGoogle Scholar
  17. Chang, J., Boyd-Graber, J., Wang, C., Gerrish, S., Blei, D.M.: Reading Tea Leaves: How Humans Interpret Topic Models. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) 23rd Annual Conference on Neural Information Processing Systems (NISP 2009), Vancouver, Canada, 2009, pp. 288–296 (2009)Google Scholar
  18. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (eds.): Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  19. Cree, G.S., Armstrong, B.C.: Computational Models of Semantic Memory. In: Spivey, M., McRae, K., Joanisse, M. (eds.) The Cambridge Handbook of Psycholinguistics, pp. 259–282. Cambridge University Press, Cambridge (2012), http://dx.doi.org/10.1017/CBO9781139029377.018 Google Scholar
  20. Dascalu, M., Dessus, P., Trausan-Matu, Ş., Bianco, M., Nardy, A.: ReaderBench, an Environment for Analyzing Text Complexity and Reading Strategies. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp. 379–388. Springer, Heidelberg (2013)Google Scholar
  21. Dascalu, M., Trausan-Matu, S., Dessus, P.: Utterances assessment in chat conversations. Research in Computing Science 46, 323–334 (2010c)Google Scholar
  22. Dascalu, M., Trausan-Matu, S., Dessus, P.: Cohesion-based Analysis of CSCL Conversations: Holistic and Individual Perspectives. In: Rummel, N., Kapur, M., Nathan, M., Puntambekar, S. (eds.) 10th Int. Conf. on Computer-Supported Collaborative Learning (CSCL 2013), pp. 145–152. ISLS, Madison (2013b)Google Scholar
  23. Deerwester, S., Dumais, S.T., Furnas, G.W., Harshman, R., Landauer, T.K., Lochbaum, K., Streeter, L.: Computer information retrieval using latent semantic structure USA Patent 4,839,853 (June 13, 1989)Google Scholar
  24. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)Google Scholar
  25. Dong, A.: The latent semantic approach to studying design team communication. Design Studies 26(5), 445–461 (2005)Google Scholar
  26. Dong, A.: Concept formation as knowledge accumulation: A computational linguistics study. AIE EDAM: Artificial Intelligence for Engineering Design, Analysis, and Manufacturing 20(1), 35–53 (2006)Google Scholar
  27. Dumais, S.T.: Improving the retrieval of information from external sources. Behavior Research Methods, Instruments and Computers 23(2), 229–236 (1991)Google Scholar
  28. Dumais, S.T.: Latent semantic analysis. Annual Review of Information Science and Technology 38(1), 188–230 (2004)Google Scholar
  29. Emond, B.: WN-LEXICAL: An ACT-R module built from the WordNet lexical database. In: 11th Int. Conf. on Cognitive Modeling, Trieste, Italy, 2006, pp. 359–360 (2006)Google Scholar
  30. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  31. Fellbaum, C.: WordNet(s). In: Brown, K. (ed.) Encyclopedia of Language and Linguistics, 2nd edn., vol. 13, pp. 665–670. Elsevier, Oxford (2005)Google Scholar
  32. Foltz, P.W., Kintsch, W., Landauer, T.K.: An analysis of textual coherence using latent semantic indexing. In: 3rd Annual Conference of the Society for Text and Discourse, Boulder, CO (1993)Google Scholar
  33. Foltz, P.W., Kintsch, W., Landauer, T.K.: The measurement of textual coherence with Latent Semantic Analysis. Discourse Processes 25(2-3), 285–307 (1998)Google Scholar
  34. Galley, M., McKeown, K.: Improving Word Sense Disambiguation in Lexical Chaining. In: Gottlob, G., Walsh, T. (eds.) 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 1486–1488. Morgan Kaufmann Publishers, Inc., Acapulco (2003)Google Scholar
  35. Gamallo, P., Bordag, S.: Is singular value decomposition useful for word similarity extraction? Language Resources and Evaluation 45(2), 95–119 (2011)Google Scholar
  36. Genesereth, M.R., Nilsson, N.J.: Logical Foundations of Artificial Intelligence. Morgan Kaufmann Publishers, San Mateo (1987)zbMATHGoogle Scholar
  37. Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. Journal of the Society for Industrial and Applied Mathematics: Series B, Numerical Analysis 2(2), 205–224 (1965)MathSciNetzbMATHGoogle Scholar
  38. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numerische Mathematik 14(5), 403–420 (1970)MathSciNetzbMATHGoogle Scholar
  39. Gordon, P.C., Grosz, B.J., Gillom, L.A.: Pronouns, Names and the Centering of Attention in discourse. Cognitive Science 17(3), 311–347 (1993)Google Scholar
  40. Graesser, A.C., McNamara, D.S., Louwerse, M.M., Cai, Z.: Coh-Metrix: Analysis of text on cohesion and language. Behavioral Research Methods, Instruments, and Computers 36(2), 193–202 (2004)Google Scholar
  41. Griffiths, T.: Gibbs sampling in the generative model of Latent Dirichlet Allocation. Stanford University, Stanford (2002)Google Scholar
  42. Grosz, B.J., Sidner, C.L.: Attention, intentions, and the structure of discourse. Computational Linguistics 12(3), 175–204 (1986)Google Scholar
  43. Grosz, B.J., Weinstein, S., Joshi, A.K.: Centering: a framework for modeling the local coherence of discourse. Computational Linguistics 21(2), 203–225 (1995)Google Scholar
  44. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5(2), 199–220 (1993)Google Scholar
  45. Halliday, M.A.K., Hasan, R.: Cohesion In English. Longman, London (1976)Google Scholar
  46. Heinrich, G.: Parameter estimation for text analysis. vsonix GmbH + University of Leipzig, Leipzig (2008)Google Scholar
  47. Hirst, G., St-Onge, D.: Lexical Chains as representation of context for the detection and correction of malapropisms. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, p. 25. MIT Press, Cambridge (1997)Google Scholar
  48. Hobbs, J.R.: Why is Discourse Coherent? SRI International, Menlo Park (1978)Google Scholar
  49. Hobbs, J.R.: Coherence and Coreference. Cognitive Science 3(1), 67–90 (1979)Google Scholar
  50. Hobbs, J.R.: On the Coherence and Structure of Discourse. Stanford University, Center for the Study of Language and Information (1985)Google Scholar
  51. Hobbs, J.R.: Topic drift. In: Dorval, B. (ed.) Conversational Organization and its Development, pp. 3–22. Ablex Publishing Corp., Norwood (1990)Google Scholar
  52. Holmer, T., Kienle, A., Wessner, M.: Explicit Referencing in Learning Chats: Needs and Acceptance. In: Nejdl, W., Tochtermann, K. (eds.) EC-TEL 2006. LNCS, vol. 4227, pp. 170–184. Springer, Heidelberg (2006)Google Scholar
  53. Howard, M.W., Kahana, M.J.: Temporal Associations and Prior-List Intrusions in Free Recall. Journal of Experimental Psychology: Learning, Memory, and Cognition 25(4), 923–941 (1999)Google Scholar
  54. Jessup, E.R., Martin, J.H.: Taking a new look at the Latent Semantic Analysis approach to information retrieval. In: Berry, M.W. (ed.) Computational Information Retrieval, pp. 121–144. SIAM, Philadelphia (2001)Google Scholar
  55. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Int. Conf. on Research in Computational Linguistics (ROCLING X), pp. 19–33. Academia Sinica, Taipei (1997)Google Scholar
  56. Joshi, M., Rosé, C.P.: Using Transactivity in Conversation Summarization in Educational Dialog. In: SLaTE Workshop on Speech and Language Technology in Education, Farmington, Pennsylvania, USA (2007)Google Scholar
  57. Jurafsky, D., Martin, J.H.: An introduction to natural language processing. Computational linguistics, and speech recognition, 2nd edn. Pearson Prentice Hall, London (2009)Google Scholar
  58. Kintsch, W.: Metaphor comprehension: A computational theory. Psychonomic Bulletin and Review 7, 257–266 (2000)Google Scholar
  59. Kintsch, W.: Predication. Cognitive Science 25(2), 173–202 (2001)Google Scholar
  60. Kontostathis, A., Edwards, L., Bayzick, J., McGhee, I., Leatherman, A., Moore, K.: Comparison of Rule-based to Human Analysis of Chat Logs. In: Meseguer, P., Mandow, L., Gasca, R.M. (eds.) 1st International Workshop on Mining Social Media Programme, Conferencia de la Asociación Española Para La Inteligencia Artificial, Seville, Spain, p. 12. Springer (2009)Google Scholar
  61. Koschmann, T.: Toward a dialogic theory of learning: Bakhtin’s contribution to understanding learning in settings of collaboration. In: Hoadley, C.M., Roschelle, J. (eds.) Int. Conf. on Computer Support for Collaborative Learning (CSCL 1999), pp. 308–313. ISLS, Palo Alto (1999)Google Scholar
  62. Kotz, S., Balakrishnan, N., Johnson, N.L.: Dirichlet and Inverted Dirichlet Distributions. In: Continuous Multivariate Distributions. Models and Applications, vol. 1, pp. 485–527. Wiley, New York (2000)Google Scholar
  63. Kullback, S., Leibler, R.A.: On Information and Sufficiency. Annals of Mathematical Statistics 22(1), 79–86 (1951)MathSciNetzbMATHGoogle Scholar
  64. Landauer, T.K.: On the computational basis of learning and cognition: Arguments from LSA. The Psychology of Learning and Motivation 41, 43–84 (2002)Google Scholar
  65. Landauer, T.K., Dumais, S.: Latent semantic analysis. Scholarpedia 3(11), 4356 (2008)Google Scholar
  66. Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: the Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review 104(2), 211–240 (1997)Google Scholar
  67. Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to Latent Semantic Analysis. Discourse Processes 25(2/3), 259–284 (1998a)Google Scholar
  68. Landauer, T.K., Kireyev, K., Panaccione, C.: Word maturity: A new metric for word knowledge. Scientific Studies of Reading 15(1), 92–108 (2011)Google Scholar
  69. Landauer, T.K., Laham, D., Foltz, P.W.: Learning human-like knowledge by singular value decomposition: a progress report. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems, vol. 10, pp. 45–51. MIT Press, Cambridge (1998b)Google Scholar
  70. Landauer, T.K., McNamara, D.S., Dennis, S., Kintsch, W. (eds.): Handbook of Latent Semantic Analysis. Erlbaum, Mahwah (2007)Google Scholar
  71. Lapata, M., Barzilay, R.: Automatic evaluation of text coherence: models and representations. In: 19th International Joint Conference on Artificial Intelligence, pp. 1085–1090. Morgan Kaufmann Publishers Inc., Edinburgh (2005)Google Scholar
  72. Leacock, C., Chodorow, M.: Combining local context and WordNet similarity for wordsense identification. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, pp. 265–283. MIT Press, Cambridge (1998)Google Scholar
  73. Lemaire, B.: Limites de la lemmatisation pour l’extraction de significations. In: 9es Journées Internationales d’Analyse Statistique des Données Textuelles (JADT 2009), pp. 725–732. Presses Universitaires de Lyon, Lyon (2009)Google Scholar
  74. Lesk, M.: Automatic sense disambiguation using machine readable dictionaries: How to tell a pine cone from an ice cream cone. In: DeBuys, V. (ed.) 5th Annual Int. Conf. on Systems documentation (SIGDOC 1986), pp. 24–26. ACM, Toronto (1986)Google Scholar
  75. Lin, D.: An information-theoretic definition of similarity. In: 15th Int. Conf. on Machine Learning, pp. 296–304. Morgan Kaufmann, Madison (1998)Google Scholar
  76. Lizza, M., Sartoretto, F.: A comparative analysis of LSI strategies. In: Berry, M.W. (ed.) Computational Information Retrieval, pp. 171–181. SIAM, Philadelphia (2001)Google Scholar
  77. MacKay, D.J.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  78. Mahnkopf, C.S.: Theory of Polyphony. In: Mahnkopf, C.S., Cox, F., Schurig, W. (eds.) Polyphony and Complexity, vol. 1, p. 328. Wolke Verlags Gmbh, Hofheim (2002)Google Scholar
  79. Mann, W.C., Thompson, S.A.: Rhetorical Structure Theory: A Theory of Text Organization. Information Sciences Institute, Marina del Rey (1987)Google Scholar
  80. Mann, W.C., Thompson, S.A.: Rhetorical Structure Theory: Toward a functional theory of text organization. Text 8(3), 243–281 (1988)Google Scholar
  81. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)zbMATHGoogle Scholar
  82. Manning, C.D., Schütze, H.: Foundations of statistical Natural Language Processing. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  83. McCallum, A.K.: MALLET: A Machine Learning for Language Toolkit. University of Massachusetts Amherst, Amherst (2002)Google Scholar
  84. McNamara, D.S., Louwerse, M.M., McCarthy, P.M., Graesser, A.C.: Coh-Metrix: Capturing linguistic features of cohesion. Discourse Processes 47(4), 292–330 (2010)Google Scholar
  85. Miller, G.A.: WordNet: A Lexical Database for English. Communications of the ACM 38(11), 39–41 (1995)Google Scholar
  86. Miller, G.A.: Foreword. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, pp. xv–xxii. MIT Press, Cambridge (1998)Google Scholar
  87. Miller, G.A.: WordNet. Princeton University Press, Princeton (2010)Google Scholar
  88. Miltsakaki, E., Kukich, K.: The role of centering theory’s rough-shift in the teaching and evaluation of writing skills. In: 38th Annual Meeting on Association for Computational Linguistics, pp. 408–415. ACL, Hong Kong (2000)Google Scholar
  89. Moldovan, D.I., Mihalcea, R.: Using WordNet and Lexical Operators to Improve Internet Searches. IEEE Internet Computing 4(1), 34–43 (2000)Google Scholar
  90. Moore, J.D., Pollack, M.E.: A problem for RST: the need for multi-level discourse analysis. Computational Linguistics 18(4), 537–544 (1992)Google Scholar
  91. Morris, J., Hirst, G.: Lexical Cohesion Computed by Thesaural Relations as an Indicator of the Structure of Text. Computational Linguistics 17(1), 21–48 (1991)Google Scholar
  92. Murphy, M.L.: Semantic Relations and the Lexicon: antonymy, synonymy and other paradigms. Cambridge University Press, Cambridge (2003)Google Scholar
  93. Navigli, R.: Meaningful Clustering of Senses Helps Boost Word Sense Disambiguation Performance. In: 44th Annual Meeting of the Association for Computational Linguistics Joint with the 21st Int. Conf. on Computational Linguistics (COLING-ACL 2006), pp. 105–112. ACL, Sydney (2006)Google Scholar
  94. Navigli, R.: Word Sense Disambiguation: A Survey. ACM Computing Surveys 41(2), 1–69 (2009)Google Scholar
  95. Navigli, R., Velardi, P.: An Analysis of Ontology-based Query Expansion Strategies. In: Workshop on Adaptive Text Extraction and Mining (ATEM 2003), in the 14th European Conference on Machine Learning (ECML 2003), Cavtat-Dubrovnik, Croatia, 2003, pp. 42–49. Springer (2003)Google Scholar
  96. Oltramari, A., Gangemi, A., Guarino, N., Masolo, C.: Restructuring WordNet’s Top-Level: The OntoClean approach. In: OntoLex’2 Workshop, Ontologies and Lexical Knowledge Bases (LREC 2002), Las Palmas, Spain, 2002, pp. 17–26 (2002)Google Scholar
  97. Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet:Similarity -Measuring the Relatedness of Concepts. In: Nineteenth National Conference on Artificial Intelligence (AAAI 2004), San Jose, CA, pp. 1024–1025 (2004)Google Scholar
  98. Raghunathan, K., Lee, H., Rangarajan, S., Chambers, N., Surdeanu, M., Jurafsky, D., Manning, C.A.: Multi-Pass Sieve for Coreference Resolution. In: Conference on Empirical Methods in Natural Language Processing (EMNLP 2010), pp. 492–501. ACL, Cambridge (2010)Google Scholar
  99. Resnik, P.: Using information content to evaluate semantic similarity. In: 14th International Joint Conference on Artificial Intelligence, pp. 448–453. Morgan Kaufmann, Montreal (1995)Google Scholar
  100. Rishel, T., Perkins, A.L., Yenduri, S., Zand, F.: Augmentation of a Term/Document Matrix with Part-ofSpeech Tags to Improve Accuracy of Latent Semantic Analysis. In: 5th WSEAS Int. Conf. on Applied Computer Science, Hangzhou, China, pp. 573–578 (2006)Google Scholar
  101. Rosé, C.P., Wang, Y.C., Cui, Y., Arguello, J., Stegmann, K., Weinberger, A., Fischer, F.: Analyzing Collaborative Learning Processes Automatically: Exploiting the Advances of Computational Linguistics in Computer-Supported Collaborative Learning. International Journal of Computer Supported Collaborative Learning 3(3), 237–271 (2008)Google Scholar
  102. Sagot, B.: WordNet Libre du Francais (WOLF). INRIA, Paris (2008)Google Scholar
  103. Sagot, B., Darja, F.: Building a free French wordnet from multilingual resources. In: Ontolex 2008, Marrakech, Maroc, p. 6 (2008)Google Scholar
  104. Schmidt, A.P., Stone, T.K.M.: Detection of Topic Change in IRC Chat Logs (2013), http://www.trevorstone.org/chatsegmentation/
  105. Silber, G., McCoy, K.: Efficiently computed lexical chains as an intermediate representation for automatic text summarization. Computational Linguistics -Summarization 28(4), 487–496 (2003)Google Scholar
  106. Snow, R., Prakash, S., Jurafsky, D., Ng, A.Y.: Learning to Merge Word Senses. In: Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL 2007), pp. 1005–1014. ACL, Prague (2007)Google Scholar
  107. Stahl, G.: Studying Virtual Math Teams. Springer, New York (2009a)zbMATHGoogle Scholar
  108. Trausan-Matu, S.: The Polyphonic Model of Hybrid and Collaborative Learning. In: Wang, F., Fong, L. (eds.) J, Kwan RC (eds) Handbook of Research on Hybrid Learning Models: Advanced Tools, Technologies, and Applications, pp. 466–486. Information Science Publishing, Hershey (2010c)Google Scholar
  109. Trausan-Matu, S.: Experiencing, Conducting, Designing and Evaluating Polyphony in CSCL Chats. In: Spada, H., Stahl, G., Miyake, N., Law, N. (eds.) 9th Int. Conf. on Computer-Supported Collaborative Learning (CSCL 2011), pp. 906–907. ISLS, Hong Kong (2011)Google Scholar
  110. Trausan-Matu, S.: From Two-Part Inventions for Three Voices, to Fugues and Creative Discourse Building in CSCL Chats. Unpublished manuscript (2013)Google Scholar
  111. Trausan-Matu, S., Dascalu, M., Dessus, P.: Textual Complexity and Discourse Structure in Computer-Supported Collaborative Learning. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 352–357. Springer, Heidelberg (2012)Google Scholar
  112. Trausan-Matu, S., Rebedea, T.: Polyphonic Inter-Animation of Voices in VMT. In: Stahl, G. (ed.) Studying Virtual Math Teams, pp. 451–473. Springer, Boston (2009)Google Scholar
  113. Trausan-Matu, S., Rebedea, T.: A Polyphonic Model and System for Inter-animation Analysis in Chat Conversations with Multiple Participants. In: Gelbukh, A. (ed.) CICLing 2010. LNCS, vol. 6008, pp. 354–363. Springer, Heidelberg (2010)Google Scholar
  114. Trausan-Matu, S., Rebedea, T., Dascalu, M.: Analysis of discourse in collaborative Learning Chat Conversations with Multiple Participants. In: Tufis, D., Forascu, C. (eds.) Multilinguality and Interoperability in Language Processing with Emphasis on Romanian, pp. 313–330. Editura Academiei, Bucharest (2010b)Google Scholar
  115. Trausan-Matu, S., Rebedea, T., Dragan, A., Alexandru, C.: Visualisation of learners’ contributions in chat conversations. In: Fong, J., Wang, F.L. (eds.) Blended Learning, pp. 217–226. Pearson/Prentice Hall, Singapour (2007a)Google Scholar
  116. Trausan-Matu, S., Stahl, G.: Polyphonic inter-animation of voices in chats. In: CSCL2007 Workshop on Chat Analysis in Virtual Math Teams, p. 12. ISLS, New Brunwick (2007)Google Scholar
  117. Trausan-Matu, S., Stahl, G., Sarmiento, J.: Polyphonic Support for Collaborative Learning. In: Dimitriadis, Y.A., Zigurs, I., Gómez-Sánchez, E. (eds.) CRIWG 2006. LNCS, vol. 4154, pp. 132–139. Springer, Heidelberg (2006)Google Scholar
  118. Trausan-Matu, S., Stahl, G., Sarmiento, J.: Supporting polyphonic collaborative learning. E-service Journal 6(1), 58–74 (2007b)Google Scholar
  119. Trausan-Matu, S., Stahl, G., Zemel, A.: Polyphonic Inter-animation in Collaborative Problem Solving Chats. Drexel University, Philadelphia (2005)Google Scholar
  120. Voorhees, E.M.: Query expansion using lexical-semantic relations. In: Croft, W.B. (ed.) 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 1994), Dublin, Ireland, pp. 61–69. Springer (1994)Google Scholar
  121. Wang, T., Hirst, G.: Refining the Notions of Depth and Density in WordNet-based Semantic Similarity Measures. In: Conference on Empirical Methods in Natural Language Processing (EMNLP 2011), pp. 1003–1011. ACL, Edinburgh (2011)Google Scholar
  122. Wegerif, R.A.: dialogical understanding of the relationship between CSCL and teaching thinking skills. In: Koschmann, T., Suthers, D., Chan, T.W. (eds.) Conf. on Computer Supported Collaborative Learning 2005: The Next 10 Years (CSCL 2005), p. 7. ISLS, Taipei (2005)Google Scholar
  123. Wiemer-Hastings, P., Zipitria, I.: Rules for syntax, vectors for semantics. In: 23rd Annual Conference of the Cognitive Science Society, pp. 1112–1117. Erlbaum, Mahwah (2001)Google Scholar
  124. Witter, D., Berry, M.W.: Downdating the latent semantic indexing model for conceptual information retrieval. The Computer Journal 41, 589–601 (1998)zbMATHGoogle Scholar
  125. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: 32nd Annual Meeting of the Association for Computational Linguistics, ACL 1994, pp. 133–138. ACL, New Mexico (1994)Google Scholar
  126. Yeh, J.-F., Wu, C.-H., Chen, M.-J.: Ontology-based speech act identification in a bilingual dialog system using partial pattern trees. Journal of the American Society for Information Science and Technology 59(5), 684–694 (2008)Google Scholar
  127. Zaromb, F.M., Howard, M.W., Dolan, E.D., Sirotin, Y.B., Tully, M., Wingfield, A., Kahana, M.J.: Temporal Associations and Prior-List Intrusions in Free Recall. Journal of Experimental Psychology: Learning, Memory, and Cognition 32(4), 792–804 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Automatic Control and Computers Politehnica University of BucharestBucharestRomania

Personalised recommendations