Analysis of Perturbations in Trajectory Control Using Visual Estimation in Multiple Quadrotor Systems

  • Alejandro Suárez
  • Guillermo Heredia
  • Aníbal Ollero
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 252)

Abstract

This paper describes the trajectory control of a quadrotor using external position estimation obtained from visual tracking in a scenario with multiple quadrotors and a camera mounted in the base of two or more UAVs, with the images being transmitted through a radio link. Applications where visual tracking can be used include fault detection and recovery of internal sensors, formation flying and autonomous aerial refueling. The dynamic model of the quadrotor and its trajectory control scheme is described along with the model of perturbations considered for the external position estimation. Graphical and numerical results are presented in different conditions, commenting separately the effect of each identified perturbation over the trajectory control. This study is done in simulation as previous step before testing quadrotor trajectory control in real conditions due to the high risk of accidents and damages on the vehicle.

Keywords

quadrotor external position estimation visual tracking trajectory control perturbations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, X., Yadav, V., Balakrishnan, S.N.: Cooperative UAV formation flying with obstacle/collision avoidance. IEEE Transactions on Control Systems Technology 15, 672–679 (2007)CrossRefGoogle Scholar
  2. 2.
    Patton, R.J., Chen, J.J.: Observer-based fault detection and isolation: robustness and applications. Control Engineering Practice 5, 671–682 (1997)CrossRefGoogle Scholar
  3. 3.
    Fravolini, M.L., Ficola, A., Campa, G., Napolitano, M.R., Seanor, B.: Modeling and control issues for autonomous aerial refueling for UAVs using a probe-drogue refueling system. Aerospace Science and Technology 8, 611–618 (2004)CrossRefGoogle Scholar
  4. 4.
    Drozeski, G., Saha, B., Vachtsevanos, G.: A fault detection and reconfi-gurable control architecture for unmanned aerial vehicles. In: Proc. of the IEEE Aer-ospace Conference, Big-Sky, USA, March 5-12 (2005)Google Scholar
  5. 5.
    Heredia, G., Ollero, A.: Detection of Sensor Faults in Small Helicopter UAVs using Observer/Kalman Filter Identification. Mathematical Problems in Engineering, vol 2011, article id. 174618 (2011)Google Scholar
  6. 6.
    Falcoz, A., Henry, D., Zolghadri, A.: Robust Fault Diagnosis for Atmospheric Reentry Vehicles: A Case Study. IEEE Transactions on Systems, Man and Cybernetics, Part A 40(5), 886–899 (2010)CrossRefGoogle Scholar
  7. 7.
    Heredia, G., Ollero, A.: Virtual Sensor for Failure Detection, Identification and Recovery in the Transition Phase of a Morphing Aircraft. Sensors 10(3), 2188–2201 (2010)CrossRefGoogle Scholar
  8. 8.
    Enns, R., Si, J.: Helicopter Flight-Control Reconfiguration for Main Rotor Actua-tor Failures. Journal of Guidance, Control and Dynamics 26(4), 572–584 (2003)CrossRefGoogle Scholar
  9. 9.
    Bateman, F., Noura, H., Ouladsine, F.: Fault Diagnosis and Fault-Tolerant Con-trol Strategy for the Aerosonde UAV. IEEE Transactions on Aerospace and Elec-tronic Systems 47(3), 2119–2137 (2011)CrossRefGoogle Scholar
  10. 10.
    Heredia, G., Caballero, F., Maza, I., Merino, L., Viguria, A., Ollero, A.: Multi-Unmanned Aerial Vehicle (UAV) Cooperative Fault Detection Employing Diffe-rential Global Poisitioning (DGPS), Inertial and Vision Sensors. Sensors 9(9), 7566–7579 (2009)CrossRefGoogle Scholar
  11. 11.
    Sattigeri, R.: Adaptive Estimation and Control with Application to Vision-Based Autonomous Formation Flight, PhD Thesis, Georgia Institute of Technology, (2007)Google Scholar
  12. 12.
    Tandale, M.D., Bowers, R., Valasek, J.: Robust Trajectory Tracking Controller for Vision based Probe and Drogue Autonomous Refueling. In: AIAA Guidance, Na-vigation and Control Conference, San Francisco, CA (2005)Google Scholar
  13. 13.
    Pollini, L., Mati, R., Innocenti, M.: Experimental Evaluation of Vision Algorithms for Formation Flight and Aerial Refueling. In: AIAA Modeling and Simulation Technologies Conference and Exhibit, Providence, RI (2004)Google Scholar
  14. 14.
    Ha, J., Alvino, C., Pryor, G., Niethammer, M., Johnson, E., Tannenbaum, A.: Ac-tive Contours and Optical Flow for Automatic Tracking of Flying Vehicles. In: Proc. of the American Control Conference, Boston, MA (2004)Google Scholar
  15. 15.
    Merino, L., Wiklund, J., Caballero, F., Moe, A., De Dios, J.R.M., Forssen, P.-E., Nordberg, K., Ollero, A.: Vision-based multi-UAV position estimation, pp. 53–62. IEEE Computer Society Press (2006)Google Scholar
  16. 16.
    Bradski, G.: Computer Vision Face Tracking for Use in a Perceptual User Inter-face. Intel Technical Articles (1998)Google Scholar
  17. 17.
    Exner, D., Bruns, E., Kurz, D., Grundhöfer, A.: Fast and Robust CAMShift Tracking. In: IEEE Computer Society Conference Computer Vision and Pattern Recognition Workshop, pp. 9–16 (2010)Google Scholar
  18. 18.
    Bouabdallah, S.: Design and Control of Quadrotors with Application to Auto-nomous Flyin, PhD Thesis, École Polytechnique Fédérale de Lausanne (2007)Google Scholar
  19. 19.
    Rao, V.G., Bernstein, D.S.: Naive Control of the Double Integrator. IEEE Control Systems 21(5), 86–97 (2001)CrossRefGoogle Scholar
  20. 20.
    Yang, T., Stoorvogel, A.A., Saberi, A.: Global Stabilization of the Discrete-Time Double Integrator Using Saturated Linear State Feedback Controller. In: American Control Conference, pp. 4440–4445 (2011)Google Scholar
  21. 21.
    Polyakov, K.Y., Rosenwasser, E.N.: Optimal Digital Controllers for Double Inte-grator: Comparison of Four Methods. In: IEEE International Symposium on Computer Aided Control System Design, pp. 199–204 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alejandro Suárez
    • 1
  • Guillermo Heredia
    • 1
  • Aníbal Ollero
    • 1
  1. 1.Robotics, Vision and Control GroupUniversidad de SevillaSevillaSpain

Personalised recommendations