Local Heuristics Analysis in the Automatic Computation of Assembly Sequences for Building Structures with Multiple Aerial Robots

  • Alvaro Sempere
  • Domingo Llorente
  • Ivan Maza
  • Aníbal Ollero
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 252)


This paper deals with the automatic computation of the assembly sequence for building truss structures from their 3D geometrical analysis. This functionality is part of the autonomous planning architecture of a team of aerial robots equipped with on-board robotic arms. The mission of the team is the construction of a structure in places where the access is difficult by conventional means. The assembly sequence is computed by applying the well known “assembly-by-disassembly” technique to the Non-Directional Blocking Graphs (NDBG) obtained from the geometrical analysis of the structure. In this paper two novel local heuristics are presented to solve the assembly problem: the former is based on the number of free nodes in the graphs and the latter is related to the size of the resulting connected subgraphs when each disconnection is applied to a set of parts. Both techniques are designed to compute the assembly sequence that allows to parallelize the building process of the structure if enough robots are available. Simulation results as well as experimental results with an aerial robot are presented in the paper.


local heuristics automated assembly aerial manipulation autonomous planning NDBG graphs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Arieh, D., Kumar, R.R., Tiwari, M.K.: Analysis of assembly operations’ difficulty using enhanced expert high-level colored fuzzy petri net model. Robotics and Computer-Integrated Manufacturing 20(5), 385–403 (2004)CrossRefGoogle Scholar
  2. 2.
    Bernard, M., Kondak, K., Maza, I., Ollero, A.: Autonomous transportation and deployment with aerial robots for search and rescue missions. Journal of Field Robotics 28(6), 914–931 (2011)CrossRefGoogle Scholar
  3. 3.
    Cao, P.-B., Xiao, R.-B.: Assembly planning using a novel immune approach. International Journal of Advanced Manufacturing Technology 31(7-8), 770–782 (2007)CrossRefGoogle Scholar
  4. 4.
    Choi, C.K., Zha, X.F., Ng, T.L., Lau, W.S.: On the automatic generation of product assembly sequences. International Journal of Production Research 36(3), 617–633 (1998)CrossRefMATHGoogle Scholar
  5. 5.
    Dao, S.D., Marian, R.M.: Genetic algorithms for integrated optimisation of precedence-constrained production sequencing and scheduling. In: Ao, S.-I., Gelman, L. (eds.) Electrical Engineering and Intelligent Systems. LNEE, vol. 130, pp. 65–80. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Guo, J., Wang, P., Cui, N.: Adaptive ant colony algorithm for on-orbit assembly planning. In: 2nd IEEE Conference on Industrial Electronics and Applications, ICIEA 2007, pp. 1590–1593 (2007)Google Scholar
  7. 7.
    Halperin, D., Latombe, J.-C., Wilson, R.H.: A general framework for assembly planning: The motion space approach. Algorithmica (New York) 26(3-4), 577–601 (2000)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Halperin, D., Wilson, R.H.: Assembly partitioning along simple paths: The case of multiple translations. Advanced Robotics 11(2), 127–145 (1997)CrossRefGoogle Scholar
  9. 9.
    Heredia, G., Caballero, F., Maza, I., Merino, L., Viguria, A., Ollero, A.: Multi-unmanned aerial vehicle (UAV) cooperative fault detection employing differential global positioning (DGPS), inertial and vision sensors. Sensors 9(9), 7566–7579 (2009)CrossRefGoogle Scholar
  10. 10.
    Homem de Mello, L.S., Sanderson, A.C.: AND/OR graph representation of assembly plans. IEEE Transactions on Robotics and Automation 6(2), 188–199 (1990)CrossRefGoogle Scholar
  11. 11.
    Jimenez, P.: Survey on assembly sequencing: a combinatorial and geometrical perspective. Journal of Intelligent Manufacturing, 1–16 (2011)Google Scholar
  12. 12.
    Latombe, J.-C., Wilson, R.H., Cazals, F.: Assembly sequencing with toleranced parts. CAD Computer Aided Design 29(2), 159–174 (1997)CrossRefGoogle Scholar
  13. 13.
    Marian, R.M., Luong, L.H.S., Abhary, K.: Assembly sequence planning and optimisation using genetic algorithms part i. automatic generation of feasible assembly sequences. Applied Soft Computing Journal 2(3), 223–253 (2003)CrossRefGoogle Scholar
  14. 14.
    Marian, R.M., Luong, L.H.S., Abhary, K.: A genetic algorithm for the optimisation of assembly sequences. Computers and Industrial Engineering 50(4), 503–527 (2006)CrossRefGoogle Scholar
  15. 15.
    Maza, I., Caballero, F., Capitan, J., Martinez de Dios, J.R., Ollero, A.: A distributed architecture for a robotic platform with aerial sensor transportation and self-deployment capabilities. Journal of Field Robotics 28(3), 303–328 (2011)CrossRefGoogle Scholar
  16. 16.
    Sempere, A., Maza, I., Ollero, A.: Cálculo automático de secuencias de ensamblado basado en una técnica de agrupación para la construcción de estructuras mediante equipos de robots. In: Actas de las XXXIV Jornadas de Automatica, Terrassa, Spain, pp. 703–710 (September 2013)Google Scholar
  17. 17.
    Sinanoglu, C., Borklu, H.R.: An assembly sequence-planning system for mechanical parts using neural network. Assembly Automation 25(1), 38–52 (2005)CrossRefGoogle Scholar
  18. 18.
    Sinanoglu, C., Borklu, H.R.: An approach to determine geometric feasibility to assembly states by intersection matrices in assembly sequence planning. Journal of Intelligent Manufacturing 15(4), 543–559 (2004)CrossRefGoogle Scholar
  19. 19.
    Tseng, H.-E.: An improved ant colony system for assembly sequence planning based on connector concept. In: Hu, W. (ed.) Electronics and Signal Processing. LNEE, vol. 97, pp. 881–888. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Viguria, A., Maza, I., Ollero, A.: Distributed service-based cooperation in aerial/ground robot teams applied to fire detection and extinguishing missions. Advanced Robotics 24(1-2), 1–23 (2010)CrossRefGoogle Scholar
  21. 21.
    Wang, J.F., Liu, J.H., Zhong, Y.F.: A novel ant colony algorithm for assembly sequence planning. International Journal of Advanced Manufacturing Technology 25(11-12), 1137–1143 (2005)CrossRefGoogle Scholar
  22. 22.
    Wilson, R.H., Latombe, J.-C.: Geometric reasoning about mechanical assembly. Artificial Intelligence 71(2), 371–396 (1994)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yin, Z., Ding, H., Li, H., Xiong, Y.: A connector-based hierarchical approach to assembly sequence planning for mechanical assemblies. CAD Computer Aided Design 35(1), 37–56 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alvaro Sempere
    • 1
  • Domingo Llorente
    • 1
  • Ivan Maza
    • 1
  • Aníbal Ollero
    • 1
  1. 1.Grupo de Robótica, Visión y ControlUniversidad de SevillaSevillaSpain

Personalised recommendations