LineSLAM: Visual Real Time Localization Using Lines and UKF

  • Eduardo Perdices
  • Luis M. López
  • José M. Cañas
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 252)


In visual simultaneous location and mapping (SLAM) with a single camera, the use of 3D points as a basic feature has been shown sufficient to reliably estimate the camera position and orientation. Nevertheless, the resultant maps are not clear enough for certain applications, even for a large amount of point features. We propose a novel SLAM technique that uses lines as basic features, and the unscented Kalman filter (UKF) as a tracking algorithm. This paper discusses the mathematical foundations as well as the practical implementation of this technique, along with the results of preliminary experiments.


Cameras simultaneous localization and mapping SLAM visual localization line detection Plücker coordinates unscented Kalman filter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004) ISBN: 0521540518Google Scholar
  2. 2.
    Davison, A.J.: Real-time simultaneous localization and mapping with a single camera. In: Proc. International Conference on Computer Vision (2003)Google Scholar
  3. 3.
    Montiel, J., Civera, J., Davison, A.: Unied inverse depth parametrization for monocular slam. In: Proceedings of Robotics: Science and Systems, Philadelphia, USA (August 2006)Google Scholar
  4. 4.
    Eade, E., Drummond, T.: Scalable monocular SLAM. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2006)Google Scholar
  5. 5.
    Civera, J., Grasa, O.G., Davison, A.J., Montiel, J.M.M.: 1-Point RANSAC for EKF Filtering: Application to Real-Time Structure from Motion and Visual Odometry. Journal of Field Robotics (2010)Google Scholar
  6. 6.
    Wan, E.A., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: The IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000, pp. 153–158. IEEE (2000)Google Scholar
  7. 7.
    Holmes, S., Klein, G., Murray, D.W.: A square root unscented Kalman filter for visual monoSLAM. In: Proc. of the IEEE International Conference on Robotics and Automation (2008)Google Scholar
  8. 8.
    Klein, G., Murray, D.: Parallel Tracking and Mapping for Small AR Workspaces. In: Proc. International Symposium on Mixed and Augmented Reality, ISMAR 2007, Nara (2007)Google Scholar
  9. 9.
    Strasdat, H., Davison, A.J., Montiel, J.M.M., Konolige, K.: Double Window Optimisation for Constant Time Visual SLAM (PDF format). In: ICCV (2011)Google Scholar
  10. 10.
    Strasdat, H., Montiel, J.M.M., Davison, A.J.: Visual SLAM: Why Filter? Image and Vision Computing (2012)Google Scholar
  11. 11.
    Smith, P., Reid, I., Davison, A.J.: Real-Time Monocular SLAM with Straight Lines (PDF format). In: BMVC (2006)Google Scholar
  12. 12.
    Jeong, W.Y., Lee, K.M.: Visual slam with line and corner features. In: Proc. IEEE/RSJ Int Intelligent Robots and Systems Conf., pp. 2570–2575 (2006)Google Scholar
  13. 13.
    Sol, J., Vidal-Calleja, T., Civera, J., Montiel, J.M.M.: Impact of Landmark Parametrization on Monocular EKF-SLAM with Points and Lines. International Journal of Computer Vision 97(3), 339–368 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mikolajczyk, K., Zisserman, A., Schmid, C.: Shape recognition with edge-based features. In: British Machine Vision Conference, BMVC 2003 (2003)Google Scholar
  15. 15.
    Williams, B., Klein, G., Reid, I.: Automatic Relocalization and Loop Closing for Real-Time Monocular SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(9), 1699–1712 (2011)CrossRefGoogle Scholar
  16. 16.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM 15(1), 11–15 (1972)CrossRefGoogle Scholar
  17. 17.
    Kǒsecká, J., Zhang, W.: Video compass. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 476–490. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Solis, A., Nayak, A., Stojmenovic, M., Zaguia, N.: Robust Line Extraction Based on Repeated Segment Directions on Image Contours. In: Proceedings of the IEEE Symposium on Computational Intelligence for Security and Defence Applications, Ottawa, Canada, July 8-10 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Eduardo Perdices
    • 1
  • Luis M. López
    • 1
  • José M. Cañas
    • 1
  1. 1.Universidad Rey Juan CarlosFuenlabradaSpain

Personalised recommendations