Advertisement

Locomotion Control of a Biped Robot through a Feedback CPG Network

  • Julián Cristiano
  • Domènec Puig
  • Miguel Angel García
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 252)

Abstract

This paper proposes a locomotion control system for biped robots by using a network of Central Pattern Generators (CPGs) implemented with Matsuoka’s oscillators. The proposed control system is able to control the system behaviour with a few parameters by using simple rhythmical signals. A network topology is proposed in order to control the generation of trajectories for a biped robot in the joint-space both in the sagittal and coronal planes. The feedback signals are directly fed into the network for controlling the robot’s posture and resetting the phase of the locomotion pattern in order to prevent the robot from falling down whenever a risk situation arises. A Genetic Algorithm is used to find optimal parameters for the system in open-loop. The system behaviour in closed-loop has been studied and analysed through extensive simulations. Finally, a real NAO humanoid robot has been used in order to validate the proposed control scheme.

Keywords

Biped locomotion CPGs Humanoid robots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vukobratović, M., Borovac, B.: Zero-moment point - thirty five years of its life. International Journal of Humanoid Robots 1(1), 157–173 (2004)CrossRefGoogle Scholar
  2. 2.
    Ijspeert, A.: Central pattern generators for locomotion control in animals and robots: A review. Neural Netw. 21(4), 642–653 (2008)CrossRefGoogle Scholar
  3. 3.
    Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol. Cybern. 65(3), 147–159 (1991)CrossRefMATHGoogle Scholar
  4. 4.
    Taga, G.: A model of the neuro-musculo-skeletal system for human locomotion. Biol. Cybern. 73, 113–121 (1995)CrossRefMATHGoogle Scholar
  5. 5.
    Righetti, L., Ijspeert, A.: Programmable central pattern generators: an application to biped locomotion control. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 1585–1590 (May 2006)Google Scholar
  6. 6.
    Park, C.-S., Hong, Y.-D., Kim, J.-H.: Full-body joint trajectory generation using an evolutionary central pattern generator for stable bipedal walking. In: Proc. IEEE Int. Conf. Intell. Robot. Syst., pp. 160–165 (October 2010)Google Scholar
  7. 7.
    Liu, C., Chen, Q.: Walking control strategy for biped robots based on central pattern generator. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 57–62 (May 2012)Google Scholar
  8. 8.
    Matsuoka, K.: Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol. Cybern. 52(6), 367–376 (1985)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Matsuoka, K.: Mechanisms of frequency and pattern control in the neural rhythm generators. Biol. Cybern. 56(5), 345–353 (1987)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: Automatic locomotion design and experiments for a modular robotic system. IEEE/ASME Trans. Mechatronics 10(3), 314–325 (2005)CrossRefGoogle Scholar
  11. 11.
    Williamson, M.: Robot arm control exploiting natural dynamics. Ph.D. Thesis, Massachusetts Institute of Technology (1999)Google Scholar
  12. 12.
    Matsuoka, K.: Analysis of a neural oscillator. Biol. Cybern. 104(4-5), 297–304 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Zhang, D., Poignet, P., Widjaja, F., Ang, W.T.: Neural oscillator based control for pathological tremor suppression via functional electrical stimulation. Control Eng. Pract. 19(1), 74–88 (2011)CrossRefGoogle Scholar
  14. 14.
    Aoi, S., Tsuchiya, K.: Locomotion control of a biped robot using nonlinear oscillators. Auton. Robots 19, 219–232 (2005)CrossRefGoogle Scholar
  15. 15.
    Nakada, K., Sato, Y.D., Matsuoka, K.: Tuning time scale parameter of piecewise linear oscillators for phase resetting control. In: The 21st Anual Conference of the Japanese Neural Network Society (December 2011)Google Scholar
  16. 16.
    Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Mariner, B., Serre, J., Maisonnier, B.: The NAO humanoid: a combination of performance and affordability. In: IEEE - International Conference on Robotics and Automation (2009)Google Scholar
  17. 17.
    Michel, O.: Cyberbotics ltd. webots tm: Professional mobile robot simulation. Int. J. Adv. Rob. Syst. 1, 39–42 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Julián Cristiano
    • 1
  • Domènec Puig
    • 1
  • Miguel Angel García
    • 2
  1. 1.Department of Computer Science and MathematicsRovira i Virgili UniversityTarragonaSpain
  2. 2.Department of Electronic and Communications TechnologyAutonomous University of MadridMadridSpain

Personalised recommendations