Advertisement

Configuring a Fleet of Ground Robots for Agricultural Tasks

  • Luis Emmi
  • Mariano Gonzalez-de-Soto
  • Pablo Gonzalez-de-Santos
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 252)

Abstract

Lately, many computer-based sensors and actuators have been incorporated in agricultural equipment with the main goal of configuring agricultural robots capable of achieving different tasks autonomously. However, the incorporation of different electronic systems in a robot impairs its reliability and increases its cost. Thus, hardware minimization and ease of software integration is mandatory to obtain feasible robotic systems. This paper strives to find a hardware architecture for both individual robots and robots working in fleets to improve reliability, decrease development costs and allow the integration of software from different developers.

Keywords

Sensors Integration Hardware architecture Autonomous robots Agricultural vehicles Fleets of robots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bautin, A., Simonin, O., Charpillet, F.: Towards a communication free coordination for multi-robot exploration. In: Proceedings of the 6th National Conference on Control Architectures of Robots, Grenoble, France, pp. 8–14 (May 2011)Google Scholar
  2. 2.
    Blackmore, B.S., Stout, W., Wang, M., Runov, B.: Robotic agriculture – the future of agricultural mechanisation? In: Proceedings of the 5th European Conference on Precision Agriculture, Uppsala, Sweden, June 9-12, pp. 621–628 (2005)Google Scholar
  3. 3.
    Bouraqadi, N., Fabresse, L., Doniec, A.: On Fleet Size Optimization for Multi-Robot Frontier-Based Exploration. In: Proceedings of the 7th National Conference on Control Architectures of Robots, Nancy, France, May 10-11 (2012)Google Scholar
  4. 4.
    Carballido, J., Perez-Ruiz, M., Agüera, J.: Design, development and lab evaluation of a weed control sprayer to be used in robotic system. In: Proceedings of the First International Conference on Robotics and Associated High Technologies and Equipment for Agriculture (RHEA 2012), Pisa, Italy, September 19-21, pp. 23–30 (2012)Google Scholar
  5. 5.
    Cartade, P., Lenain, R., Thuilot, B., Benet, B., Berducat, M.: Motion Control of a heterogeneous fleet of mobile robots: Formation control for achieving agriculture task. In: Proceedings of the International Conference on Agricultural Engineering (CIGR-AgEng 2012), Valencia, Spain, July 8-12 (2012)Google Scholar
  6. 6.
    Conesa-Muñoz, J., Ribeiro, A., Andujar, D., Fernandez-Quintanilla, C., Dorado, J.: Exploring the effect of turning maneuvers on the multi-path planning of a robot fleet in agricultural tasks. In: Proceedings of the First International Conference on Robotics and Associated High Technologies and Equipment for Agriculture (RHEA 2012), Pisa, Italy, September 19-21, pp. 55–60 (2012)Google Scholar
  7. 7.
    Emmi, L., Pajares, G., Gonzalez-de-Santos, P.: Integrating robot positioning controllers in the SEARFS simulation environment. In: Proceedings of the First International Conference on Robotics and Associated High Technologies and Equipment for Agriculture (RHEA 2012), Pisa, Italy, September 19-21, pp. 151–156 (2012)Google Scholar
  8. 8.
    Emmi, L., Paredes-Madrid, L., Ribeiro, A., Pajares, G.: Pablo Gonzalez-de-Santos. Fleets of Robots for Precision Agriculture: a Simulation Environment 40(1), 41–58 (2013)Google Scholar
  9. 9.
    Hinterhofer, T., Tomic, S.: Wireless QoS-enabled Multi-Technology Communication for the RHEA Robotic Fleet. In: International Workshop on Robotics and Associated High Technologies and Equipment for Agriculture (RHEA 2011), Montpellier, France, pp. 173–186 (September 9, 2011)Google Scholar
  10. 10.
    Li, M., Imou, K., Wakabayashi, K., Yokoyama, S.: Review of research on agricultural vehicle autonomous guidance. International Journal of Agricultural and Biological Engineering 2, 1–16 (2009)Google Scholar
  11. 11.
    Montalvo, M., Guerrero, J.M., Romeo, J., Emmi, L., Guijarro, M., Pajares, G.: Automatic expert system for weeds/crops identification in images from maize fields. Expert Systems with Applications 40, 75–82 (2013)CrossRefGoogle Scholar
  12. 12.
    Nagasaka, Y., Saito, H., Tamaki, K., Seki, M., Kobayashi, K., Taniwaki, K.: An Autonomous Rice Transplanter Guided by Global Positioning System and Inertial Measurement Unit. Journal of Field Robotics 26, 537–548 (2009)CrossRefGoogle Scholar
  13. 13.
    Nørremark, M., Griepentrog, H.W., Nielsen, J., Søgaard, H.T.: The development and assessment of the accuracy of an autonomous GPS-based system for intra-row mechanical weed control in row crops. Biosystems Engineering 101, 396–410 (2008)CrossRefGoogle Scholar
  14. 14.
    Peleg, D.: Distributed Coordination Algorithms for Mobile Robot Swarms: New Directions and Challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.) IWDC 2005. LNCS, vol. 3741, pp. 1–12. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Peruzzi, A., Frasconi, C., Martelloni, L., Fontanelli, M., Raffaelli, M.: Application of precision farming to maize and garlic in the RHEA project. In: Proceedings of the First International Conference on Robotics and Associated High Technologies and Equipment for Agriculture (RHEA 2012), Pisa, Italy, September 19-21, pp. 55–60 (2012)Google Scholar
  16. 16.
    Pilarski, T., Happold, M., Pangels, H., Ollis, M., Fitzpatrick, K., Stentz, A.: The Demeter system for automated harvesting. Autonomous Robots 13, 9–20 (2002)CrossRefMATHGoogle Scholar
  17. 17.
    Reid, J.F., Zhang, Q., Noguchi, N., Dickson, M.: Agricultural automatic guidance research in North America. Computers and Electronics in Agriculture 25, 155–167 (2000)CrossRefGoogle Scholar
  18. 18.
    RHEA: A robot fleet for highly effective agriculture and forestry management, http://www.rhea-project.eu/(accessed on January 16, 2013)
  19. 19.
    Urmson, C., et al.: Autonomous Driving in Urban Environments: Boss and the Urban Challenge. Journal of Field Robotics 25(8), 425–466 (2008)CrossRefGoogle Scholar
  20. 20.
    Vieri, M., Lisci, R., Rimediotti, M., Sarri, D.: The innovative RHEA airblast sprayer for tree crop treatment. In: Proceedings of the First International Conference on Robotics and Associated High Technologies and Equipment for Agriculture (RHEA 2012), Pisa, Italy, September 19-21, pp. 93–100 (2012)Google Scholar
  21. 21.
    Wu, D., Zhang, Q., Reid, J.F.: Adaptive steering controller using a Kalman estimator for wheel-type agricultural tractors. Robotica 19, 527–533 (2001)CrossRefGoogle Scholar
  22. 22.
    Xue, J., Zhang, L., Grift, T.E.: Variable field-of-view machine vision based row guidance of an agricultural robot. Computers and Electronics in Agriculture 84, 85–91 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Luis Emmi
    • 1
  • Mariano Gonzalez-de-Soto
    • 1
  • Pablo Gonzalez-de-Santos
    • 1
  1. 1.Centre for Automation and Robotics (UPM-CSIC)MadridSpain

Personalised recommendations