Generating Autonomous Behaviour for a Crop Inspection Robot

  • José M. Bengochea-Guevara
  • Jesús Conesa-Muńoz
  • Ángela Ribeiro
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 252)

Abstract

This paper presents the main characteristics of a robot whose aim is to perform field inspection using autonomous navigation. The solution developed for crop row tracking is shown, which is a fundamental behaviour for crop inspection. For this purpose, an image processing method is implemented to determine the vehicle’s relative position to the crop row in real time. This position is supplied to two fuzzy controllers, one for angular speed and the other for linear speed. To integrate crop row tracking and other skills that the robot needs, we propose generating the different behaviours of the robot using a network of nodes with different functions: perceptive nodes, cognitive nodes and actuator nodes. The actions of the robot emerge from this set of behaviours, depending on the goals and needs that must be met at each given moment in time.

Keywords

autonomous behaviour crop inspection nodes network motivational constructs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Srinivasan, A.: Handbook of Precision Agriculture. Principles and Applications. The Haworth Press, New York (2006)Google Scholar
  2. 2.
    Stafford, J.V.: Implementing Precision Agriculture in the 21st Century. Journal of Agricultural Engineering Research 76, 267–275 (2000)CrossRefGoogle Scholar
  3. 3.
    Senay, G.B., Ward, A.D., Lyon, J.G., Fausey, N.R., Nokes, S.E.: Manipulation of high spatial resolution aircraft remote sensing data for use in site specific Farming. Transactions of the American Society of Agricultural Engineers 41, 489–495 (1998)CrossRefGoogle Scholar
  4. 4.
    Gottschalk, R., Burgos-Artizzu, X.P., Ribeiro, A.: Real-time image processing for the guidance of a small agricultural field inspection vehicle (2010)Google Scholar
  5. 5.
    Burgos-Artizzu, X.P., Ribeiro, A., Tellaeche, A., Pajares, G., Fernandez-Quintanilla, C.: Analysis of natural images processing for the extraction of agricultural elements. Image Vis. Comput. 28, 138–149 (2010)CrossRefGoogle Scholar
  6. 6.
    Sugeno, M.: On Stability of Fuzzy Systems Expressed by Fuzzy Rules with Singletons Consequents. IEEE Trans. Fuzzy Systems 7(2), 201–224 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bengochea-Guevara, J.M., Conesa-Muñoz, J., Ribeiro, A.: Developing a small autonomous robot for crop inspection (2012)Google Scholar
  8. 8.
    Bermúdez Moreno, J., Bermúdez, J., Pérez-García, A.M., Ruiz Caballero, J.A., Sanjuán, P., Rueda, B.: Psicología de la Personalidad. UNED, Madrid (2011)Google Scholar
  9. 9.
    Sanz Aparicio, M.T., Menéndez, F.J., Rivero, M.P., Conde, M.: Psicología de la Motivación. Sanz y Torres, Madrid (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • José M. Bengochea-Guevara
    • 1
  • Jesús Conesa-Muńoz
    • 1
  • Ángela Ribeiro
    • 1
  1. 1.Center for Automation and RoboticsCSIC-UPMMadridSpain

Personalised recommendations