A Hierarchical Hybrid Architecture for Mission-Oriented Robot Control

  • Manuel Muñoz
  • Eduardo Munera
  • J. Francisco Blanes
  • Jose E. Simó
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 252)


In this work is presented a general architecture for a multi physical agent network system based on the coordination and the behaviour management. The system is organised in a hierarchical structure where are distinguished the individual agent actions and the collective ones linked to the whole agent network. Individual actions are also organised in a hybrid layered system that take advantages from reactive and deliberative control. Sensing system is involved as well in the behaviour architecture improving the information acquisition performance.


Intelligent Robotics Limited Resources Management Embedded Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aragues, R.: Consistent data association in multi-robot systems with limited communications. Robotics: Science and Systems, 97–104 (2010)Google Scholar
  2. 2.
    Aragues, R., Cortes, J., Sagues, C.: Distributed consensus on robot networks for dynamically merging feature-based maps. IEEE Transactions on Robotics (2012)Google Scholar
  3. 3.
    Arkin, R.C.: Motor schema based mobile robot navigation. The International Journal of Robotics Research 8(4), 92–112 (1989)Google Scholar
  4. 4.
    Asama, H., Habib, M.K., Endo, I., Ozaki, K., Matsumoto, A., Ishida, Y.: Functional distribution among multiple mobile robots in an autonomous and decentralized robot system. In: Proceedings of the 1991 IEEE International Conference on Robotics and Automation. IEEE (1991)Google Scholar
  5. 5.
    Benet, G., Blanes, F., Martínez, M., Simó, J.: A multisensor robot distributed architecture. In: IFAC Conference INCOM 1998 (1998)Google Scholar
  6. 6.
    Brooks, R.: A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2(1), 14–23 (1986)CrossRefGoogle Scholar
  7. 7.
    Canas, J.M., Matellán, V.: Dynamic schema hierarchies for an autonomous robot. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 903–912. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Choset, H., Nagatani, K.: Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization. IEEE Transactions on Robotics and Automation 17(2), 125–137 (2001)CrossRefGoogle Scholar
  9. 9.
    Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte carlo localization: Efficient position estimation for mobile robots. American Association for Artificial Intelligence, 343–349 (1999)Google Scholar
  10. 10.
    Hu, J., Xie, L., Xu, J.: Vision-based multi-agent cooperative target search. In: Control Automation Robotics & Vision (ICARCV), pp. 895–900 (2012)Google Scholar
  11. 11.
    Huq, R., Mann, G.K.I., Gosine, R.G.: Behavior-modulation technique in mobile robotics using fuzzy discrete event system. IEEE Transactions on Robotics 22(5), 903–916 (2006)CrossRefGoogle Scholar
  12. 12.
    Jayasiri, A., Mann, G., Gosine, R.G.: Mobile robot behavior coordination using supervisory control of fuzzy discrete event systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 690–695 (2009)Google Scholar
  13. 13.
    Jayasiri, A., Mann, G.K.I., Gosine, R.G.: Behavior coordination of mobile robotics using supervisory control of fuzzy discrete event systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41(5), 1224–1238 (2011)CrossRefGoogle Scholar
  14. 14.
    Koenig, N., Howard, A.: Gazebo-3d multiple robot simulator with dynamics. Technical report (2006)Google Scholar
  15. 15.
    Lin, F., Ying, H.: Modeling and control of fuzzy discrete event systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 32(4), 408–415 (2002)CrossRefGoogle Scholar
  16. 16.
    Madden, J.D.: Multi-robot system based on model of wolf hunting behavior to emulate wolf and elk interactions. In: 2010 IEEE International Conference on Robotics and Biomimetics, ROBIO, pp. 1043–1050 (2010)Google Scholar
  17. 17.
    Mataric, M.J.: Interaction and intelligent behavior. Technical report, DTIC Document (1994)Google Scholar
  18. 18.
    Olivera, V.M., Molina, J.M., Sommaruga, L., et al.: Fuzzy cooperation of autonomous robots. In: Fourth International System on Intelligent Robotics Systems, Lisboa, Portugal (1996)Google Scholar
  19. 19.
    McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R., McEwen, R.: A deliberative architecture for auv control. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 1049–1054. IEEE (2008)Google Scholar
  20. 20.
    Munera, E., Muñoz, M., Simó, J., Blanes, F.: Humanoid Robot Self-Location In SPL League. In: Comité Español de Automática (CEA), XXXIII Jornadas de Automatica, 797–804 (2012)Google Scholar
  21. 21.
    Proetzsch, M., Luksch, T., Berns, K.: Development of complex robotic systems using the behavior-based control architecture iB2C. Robotics and Autonomous Systems 58(1), 46–67 (2010)CrossRefGoogle Scholar
  22. 22.
    Qiu, D.: Supervisory control of fuzzy discrete event systems: a formal approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 35(1), 72–88 (2005)CrossRefGoogle Scholar
  23. 23.
    Aladebaran Robotics. NAO Software Documentation 1.12. Technical report (2012)Google Scholar
  24. 24.
    St-Pierre, M., Gingras, D.: Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system. In: 2004 IEEE Intelligent Vehicles Symposium, pp. 831–835 (2004)Google Scholar
  25. 25.
    Stoytchev, A., Arkin, R.C.: Combining deliberation, reactivity, and motivation in the context of a behavior-based robot architecture. In: Proceedings of the 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 290–295 (2001)Google Scholar
  26. 26.
    Nicolau, V., Muñoz, M., Simó, J.: KertrolBot Platform. SiDiReLi: Distributed System with Limited Resources. Technical report, Institute of Control Systems and Industrial Computing - Polytechnic University of Valencia, Valencia, Spain (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Manuel Muñoz
    • 1
  • Eduardo Munera
    • 1
  • J. Francisco Blanes
    • 1
  • Jose E. Simó
    • 1
  1. 1.Institute of Control Systems and Industrial ComputingPolytechnic City of Innovation, Polytechnic University of ValenciaValenciaSpain

Personalised recommendations