Skip to main content

Bimanual Robot Manipulation and Packaging of Shoes in Footwear Industry

  • Chapter

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 252)

Abstract

The present paper presents the ongoing research undertaken as a research experiment, called HERMES, inside Echord european integrated project framework. The goal of the HERMES experiment is to study, analyze and finally implement the packaging of shoes on a robot system that mimics the required degree of flexibility and dexterity provided by the human workers. The use of a bimanual system with anthropomorphic hands has been chosen as it could also be applied to solve other processes of similar or even higher complexity in the future and thus provide a holistic approach towards automization in footwear industry. In this paper, the first experimental results of the HERMES experiment are presented.

Keywords

  • Robot vision
  • bimanual robotic systems
  • automation
  • control

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-03413-3_23
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-03413-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Floyd, P., Patel, S., Kantor, E.: Survey on the Situation of the European Footwear Sector and Prospects for its Future Development: Final Report. In: Depth Assessment of The Situation of The European Footwear Sector and Prospects for Its Future Development, DG Enterprise and Industry, European Commission (November 2011)

    Google Scholar 

  2. INTELISHOE - Integration and linking of shoe and auxiliary industries, 5Th FP, IST-1999-20949 (2000-2002)

    Google Scholar 

  3. EURO-ShoE: Development of the processes and implementation of the management tools for the extended user oriented shoe enterprise, G1RD-2000-00343 (2001-2004)

    Google Scholar 

  4. CEC made shoe-Custom, Environment and Comfort made shoe, FP6, contract 507378 (2004-2008)

    Google Scholar 

  5. FIT4U-Framework of Integrated Technologies for User Centred Products, FP7, 229336 (2009-2012)

    Google Scholar 

  6. Robofoot-Smart robotics for high added value footwear industry, FP7, Project Reference:260159 (2010-2013)

    Google Scholar 

  7. Maurtua, I., Ibarguren, A., Tellaeche, A.: Robotics for the Benefit of Footwear Industry. In: Su, C.-Y., Rakheja, S., Liu, H. (eds.) ICIRA 2012, Part II. LNCS, vol. 7507, pp. 235–244. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  8. Ibarguren, A., Martínez-Otzeta, J.M., Maurtua, I.: Particle Filtering for Industrial 6DOF Visual Servoing? Journal of Intelligent and Robotic Systems (in press)

    Google Scholar 

  9. Maurtua, I., Ibarguren, A., Tellaeche, A.: Robotic solutions for Footwear Industry. In: 2012 IEEE 17th Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–4, 17–21 (2012)

    Google Scholar 

  10. Robots in Footwear Industry: requirements. Deliverable 1.1. ROBOFOOT-Smart robotics for high added value footwear industry, www.robofoot.eu

  11. Moreels, P., Perona, P.: Evaluation of feature detectors and descriptors based on 3-D objects. International Journal of Computer Vision (2006)

    Google Scholar 

  12. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Conference on Computer Vision and Pattern Recognition, pp. 511–518 (2001)

    Google Scholar 

  13. Teulire, C., Marchand, E., Eck, L.: Using multiple hypothesis in model-based tracking. In: IEEE Int. Conf. on Robotics and Automation, ICRA 2010, Anchorage, Alaska (May 2010)

    Google Scholar 

  14. Kubacki, J., Giesler, B., Parlitz, C.: Active Autonomous Object Modeling for Recognition and Manipulation. In: Autonome Mobile Systeme, pp. 227–233 (2005)

    Google Scholar 

  15. Kubacki, J., Baum, W.: Towards Open-Ended 3-D Rotation and Shift Invariant Object Detection for Robot Companions. In: Intelligent Robots and Systems, IROS, pp. 3352–3357 (2006)

    Google Scholar 

  16. Viola, P.A., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)

    CrossRef  Google Scholar 

  17. Hough, P.: Method and means for recognizing complex patterns. U.S. Patent 3069654 (1962)

    Google Scholar 

  18. Fischer, J., Arbeiter, G., Bormann, R., Verl, A.: A framework for object training and 6 DoF pose estimation. In: Proceedings of the 7th German Conference on Robotics (ROBOTIK), München (2012)

    Google Scholar 

  19. Fischer, J., Bormann, R., Arbeiter, G., Verl, A.: A Feature Descriptor for Texture-Less Object Representation Using 2D and 3D Cues from RGB-D Data. In: IEEE International Conference on Robotics and Automation, Kongresszentrum Karlsruhe, Karlsruhe, Germany, May 6-10 (2013)

    Google Scholar 

  20. Bormann, R., Fischer, J., Arbeiter, G., Verl, A.: Efficient Object Categorization with the Surface-Approximation Polynomials Descriptor. In: Stachniss, C., Schill, K., Uttal, D. (eds.) Spatial Cognition 2012. LNCS, vol. 7463, pp. 34–53. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  21. Bormann, R., Fischer, J., Arbeiter, G., Verl, A.: Adding Rotational Robustness to the Surface-Approximation Polynomials Descriptor. In: Proceedings of the IEEE Conference on Humanoid Robots (2012)

    Google Scholar 

  22. Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol. Biol. 147, 195–197 (1981)

    CrossRef  Google Scholar 

  23. May, P., Ehrlich, H.C., Steinke, T.: ZIB Structure Prediction Pipeline: Composing a Complex Biological Workflow through Web Services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1148–1158. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  24. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  25. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid Information Services for Distributed Resource Sharing. In: 10th IEEE International Symposium on High Performance Distributed Computing, pp. 181–184. IEEE Press, New York (2001)

    CrossRef  Google Scholar 

  26. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: an Open Grid Services Architecture for Distributed Systems Integration. Technical report, Global Grid Forum (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morales, R., Badesa, F.J., García-Aracil, N., Bormann, R., Fischer, J., Graf, B. (2014). Bimanual Robot Manipulation and Packaging of Shoes in Footwear Industry. In: Armada, M., Sanfeliu, A., Ferre, M. (eds) ROBOT2013: First Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-319-03413-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03413-3_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03412-6

  • Online ISBN: 978-3-319-03413-3

  • eBook Packages: EngineeringEngineering (R0)