Advertisement

RUAV System Identification and Verification Using a Frequency-Domain Methodology

  • I. Sánchez
  • D. Santamaría
  • A. Viguria
  • Aníbal Ollero
  • Guillermo Heredia
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 252)

Abstract

The aim of this paper is to show a methodology to obtain a model of a rotary wing UAV (Unmanned Aerial Vehicle) employing a frequency-domain System Identification (SYSID) methodology using CIFER®. The methodology is applied to the CB-5000 RUAV and discuss several identification issues, from the telemetry acquisition process, parametric model to be identified and identification technique, to finally validate and implement the model. The UAV’s real autopilot software is integrated with the CIFER® model showing a good behaviour without any change on the tuning of the real autopilot gains. In order to validate and compare the results, an alternative two rigid body kinematic model is presented. Finally, the models integrated with the autopilot are compared by using the experimental data of the real RUAV (Rotorcraft UAV) platform following the same flight plan.

Keywords

UAV modelling and control Identification CIFER® UAV rotorcraft aircraft modelling and control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kondak, K., Maza, I., Ollero, A., Bernard, M.: Autonomous Transportation and Deployment with Aerial Robots for Search and Rescue Missions. Wiley Blackwell 28(6), 914–931 (2011)Google Scholar
  2. 2.
    Tischler, M.B., Remple, R.K.: Aircraft and Rotorcraft System Identification. Engineering Methods with Fligth Test Examples. AIAA (2006)Google Scholar
  3. 3.
    Sánchez Montaño, I.: Indentificación en frecuencia de UAVs de ala giratoria usando CIFER. Aplicación al CB-5000. Internal Report. University of Seville (2013)Google Scholar
  4. 4.
    Kalman, R.E.: A New Approach to Linear Filtering and prediction problems. Research Institute for Advanced Study. Baltimore Md (1960)Google Scholar
  5. 5.
    Alarcón, F., Jimenez, A., Viguria, A., Bejar, M., Ollero, A., Santamaría, D.: Model-Based design development and validation for UAS critical software. Journal of Intelligent and Robotic Systems 65(1-4), 103–114 (2012)CrossRefGoogle Scholar
  6. 6.
    Mettler, B.: Identification Modeling and Characteristics of Miniature Rotorcraft. Kluwer Academic Publishers (2003)Google Scholar
  7. 7.
    Klein, V., Morelli, E.A.: Aircraft System Identification. Th. and Practice, AIAA (2006)Google Scholar
  8. 8.
    CIFER user’s guideGoogle Scholar
  9. 9.
    Theodore, C.R., Tischler, M.B.: Rapid Frequency Domain Methods for UAV Flight Control Applications. In: AIAA Atmospheric Flight Mechanics Conf., Austin, Texas (2003)Google Scholar
  10. 10.
    Miller, M.P.: An Accurate Method of measuring the moments of inertia of Airplanes, vol. Naca-tn-351 (October 1930) Google Scholar
  11. 11.
    Wingrove, R.: Applications of a Technique for Estimating Aircraft States from Recorded Flight Test Data. AIAA (1972)Google Scholar
  12. 12.
    Bach, R.E.: State Estimation Applications in Aircraft Flight-Data Analysis: A User’s Manual for SMACK, NASA (1991)Google Scholar
  13. 13.
    Fletcher, J.W.: Obtaining Consistent Model of Helicopter Flight-Data Measurement Errors Using Kinematic-Compatibility and State-Reconstruction Methods. American Helicopter Society Annual Forum (1990)Google Scholar
  14. 14.
    Béjar, M.: Methodology and Techniques for designing control systems of autonomous helicopters, PhDThesis, University of Seville (2009)Google Scholar
  15. 15.
    García, M., Viguria, A., Ollero, A., Santamaría, D.: Position-based velocity control system for rotary-wing UAVs. In: Proceedings of the 1st Workshop on Research, Development and Education on Unmanned Aerial Systems, RED-UAS (December 2011)Google Scholar
  16. 16.
    Kondak, K., Bernard, M., Losse, N., Hommel, G.: Elaborated modeling and control for autonomous small size helicopters. In: ISR/ROBOTIK 2006 Joint Conference on Robotics (2006)Google Scholar
  17. 17.
    La Civita, M.: Integrated Modeling and Robust Control for Full-Envelope Flight of Robotic Helicopters, Pittsburgh: Ph D.Carnegie Mellon University (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • I. Sánchez
    • 2
  • D. Santamaría
    • 1
  • A. Viguria
    • 1
  • Aníbal Ollero
    • 2
  • Guillermo Heredia
    • 2
  1. 1.Center for Advanced Aerospace Technologies (CATEC)Parque Tecnológico y Aeronáutico de AndalucíaLa Rinconada SevilleSpain
  2. 2.Robotics, Vision and Control Group (GRVC)Universidad de SevillaSevillaSpain

Personalised recommendations