Skip to main content

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 61))

  • 1442 Accesses

Abstract

Organizations that collect data from their multiple branches are common. Also, many established organizations possess data for a long period of time. Due to a spectrum of analyses, such data often need to be sub-divided into smaller databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari A (2012) Synthesizing global exceptional patterns in different data sources. J Intell Syst 21(3):293–323

    Google Scholar 

  • Adhikari A, Rao PR (2008a) Synthesizing heavy association rules from different real data sources. Pattern Recogn Lett 29(1):59–71

    Article  Google Scholar 

  • Adhikari A, Rao PR (2008b) Efficient clustering of databases induced by local patterns. Decis Support Syst 44(4):925–943

    Article  Google Scholar 

  • Adhikari J, Rao PR (2013) Identifying calendar-based periodic patterns. In: Ramanna S, Jain L, Howlett RJ (eds) Emerging paradigms in machine learning, pp 329–357. Springer, Berlin

    Google Scholar 

  • Adhikari J, Rao PR, Adhikari A (2009) Clustering items in different data sources induced by stability. Int Arab J Inf Technol 6(4):394–402

    Google Scholar 

  • Adhikari A, Ramachandrarao P, Prasad B, Adhikari J (2010a) Mining multiple large data sources. Int Arab J Inf Technol 7(2):241–249

    Google Scholar 

  • Adhikari A, Ramachandrarao P, Pedrycz W (2010b) Developing multi-databases mining applications. Springer, London

    Google Scholar 

  • Adhikari A, Ramachandrarao P, Pedrycz W (2011a) Study of select items in different data sources by grouping. Knowl Inf Syst 27(1):23–43

    Article  Google Scholar 

  • Adhikari J, Rao PR, Pedrycz W (2011b) Mining icebergs in time-stamped databases. In: Proceedings of Indian international conferences on artificial intelligence, pp 639–658

    Google Scholar 

  • Agrawal R, Shafer J (1999) Parallel mining of association rules. IEEE Trans Knowl Data Eng 8(6):962–969

    Article  Google Scholar 

  • Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of international conference on very large data bases, pp 487–499

    Google Scholar 

  • Ashok VG, Mukkamala R (2011) Data mining without data: a novel approach to privacy-preserving collaborative distributed data mining. Workshop on Privacy in the Electronic Society, pp 159–164

    Google Scholar 

  • Babcock B, Chaudhury S, Das G (2003) Dynamic sample selection for approximate query processing. In: Proceedings of ACM SIGMOD conference management of data, pp 539–550

    Google Scholar 

  • Böttcher M, Hoppner F, Spiliopoulou M (2008) On exploiting the power of time in data mining. SIGKDD Explor 10(2):3–11

    Article  Google Scholar 

  • Chen Y-L, Tang K, Shen R-J, Hu Y-H (2005) Market basket analysis in a multiple store environment. Decis Support Syst 40(2):39–354

    Google Scholar 

  • Cochran WG (1977) Sampling techniques, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Congiusta A, Talia D, Trunfio P (2007) Service-oriented middleware for distributed data mining on the grid. J Parallel Distrib Comput 68(1):3–15

    Article  Google Scholar 

  • Da Silva JC, Klusch M (2006) Inference in distributed data clustering. Eng Appl Artif Intell 19(4):363–369

    Article  Google Scholar 

  • Da Silva JC, Giannellab C, Bhargava R, Kargupta H, Klusch M (2005) Distributed data mining and agents. Eng Appl Artif Intell 18(7):791–807

    Article  Google Scholar 

  • Domingos P (2003) Prospects and challenges for multi-relational data mining. SIGKDD Explor 5(1):80–83

    Article  Google Scholar 

  • Dumas M, Fauvet MC, Scholl PC (1998) Handling temporal grouping and pattern-matching queries in a temporal object model. In: Proceedings of CIKM, pp 424–431

    Google Scholar 

  • Dzeroski S (2003) Multi-relational data mining: an introduction. SIGKDD Explor 5(1):1–16

    Article  Google Scholar 

  • Ezeife CI, Zhang D (2009) TidFP: mining frequent patterns in different databases with transaction ID. In: Proceedings of DaWaK, pp 125–137

    Google Scholar 

  • Fiolet V, Toursel B (2007) A clustering method to distribute a database on a grid. Future Gener Comput Syst 23(8):997–1002

    Article  Google Scholar 

  • Forestier G, Wemmert C, Pierre Gançarski P, Inglada J (2009) Mining multiple satellite sensor data using collaborative clustering. In: Proceedings of ICDM workshops, pp 501–506

    Google Scholar 

  • Foster I, Kesselman C (eds) (1999) The grid: blueprint for a future computing infrastructure. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Greenfield A (2006) Everyware: the dawning age of ubiquitous computing, 1st edn. New Riders Publishing, Indianapolis

    Google Scholar 

  • Han J, Nishio S, Kawano H, Wang W (1998) Generalization-based data mining in object-oriented databases using an object cube model. Data Knowl Eng 25(1–2):55–97

    Article  MATH  Google Scholar 

  • Hu J, Zhong N (2006) Organizing multiple data sources for developing intelligent e-business portals. Data Min Knowl Disc 12(2–3):127–150

    Article  MathSciNet  Google Scholar 

  • Inan A, Kaya SV, Saygın Y, Savas E, Hintoglu AA, Levi A (2007) Privacy preserving clustering on horizontally partitioned data. Data Knowl Eng 63(3):646–666

    Article  Google Scholar 

  • Jiang Z, Sarkar S, De P, Dey B (2007) A framework for reconciling attribute values from multiple data sources. Manage Sci 53(12):1946–1963

    Article  Google Scholar 

  • Kargupta H, Huang W, Krishnamurthy S, Park B, Wang S (2000) Collective PCA from distributed and heterogeneous data. In: Proceedings of the 4th European conference on principles and practice of knowledge discovery in databases, pp 452–457

    Google Scholar 

  • Kargupta H, Liu K, Ryan J (2003) Privacy sensitive distributed data mining from multi-party data. In: Proceedings of intelligence and security informatics, pp 336–342

    Google Scholar 

  • Kargupta H, Joshi A, Sivakumar K, Yesha Y (2004) Data mining: next generation challenges and future directions. MIT Press, Cambridge

    Google Scholar 

  • Kargupta H, Han J, Yu PS, Motwani R, Kumar V (2008) Next generation of data mining. Springer, Berlin

    Google Scholar 

  • Kum H-C, Chang HC, Wang W (2006) Sequential pattern mining in multi-databases via multiple alignment. Data Min Knowl Disc 12(2–3):151–180

    Article  MathSciNet  Google Scholar 

  • Lan G-C, Hong T-P, Tseng VS (2007) A novel algorithm for mining rare-utility itemsets in a multi-database environment. In: Proceedings of the 26th workshop on combinatorial mathematics and computation theory, pp 293–302

    Google Scholar 

  • Li H, Shen Y, Hu X (2009) A novel mining method of global negative association rules in multi-database. In: Proceedings of IEEE international conference on intelligent computing and intelligent systems, pp 392–396

    Google Scholar 

  • Ling CX, Yang Q (2006) Discovering classification from data of multiple sources. Data Min Knowl Disc 12(2–3):181–201

    Article  MathSciNet  Google Scholar 

  • Liu H, Lu H, Yao J (2001) Toward multi-database mining: identifying relevant databases. IEEE Trans Knowl Data Eng 13(4):541–553

    Article  Google Scholar 

  • Luo J, Wang M, Hu J, Shi J (2007) Distributed data mining on agent grid: issues, platform and development toolkit. Future Gener Comput Syst 23(1):61–68

    Article  Google Scholar 

  • Moon B, Lopez IFV, Immanuel V (2003) Efficient algorithms for large-scale temporal aggregation. IEEE Trans Knowl Data Eng 15(3):744–759

    Article  Google Scholar 

  • Ozsu MT, Valduriez P (2011) Principles of distributed database systems. Springer, Berlin

    Google Scholar 

  • Page D, Craven M (2003) Biological applications of multi-relational data mining. SIGKDD Explor 5(1):69–79

    Article  Google Scholar 

  • Papadimitriou S, Sun J, Faloutsos C (2005) Streaming pattern discovery in multiple time-series. In: Proceedings of VLDB, pp 697–708

    Google Scholar 

  • Peng W-C, Liao Z-X (2009) Mining sequential patterns across multiple sequence databases. Data Knowl Eng 68(10):1014–1033

    Article  Google Scholar 

  • Pyle D (1999) Data preparation for data mining. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Savasere A, Omiecinski E, Navathe S (1995) An efficient algorithm for mining association rules in large databases. In: Proceedings of the 21st international conference on very large data bases, pp 432–443

    Google Scholar 

  • Siadaty MS, Harrison JH Jr (2008) Multi-database mining. Clin Lab Med 28(1):73–82

    Article  Google Scholar 

  • Stankovski V, Swain M, Kravtsov V, Niessen T, Wegener D, Kindermann J, Dubitzky W (2008) Grid-enabling data mining applications with DataMiningGrid: an architectural perspective. Future Generation Computer Systems 24(4):259–279

    Article  Google Scholar 

  • Stolfo S, Prodromidis AL, Chan PK (1997) JAM: java agents for meta-learning over distributed databases. In: Proceedings of 3rd international conference on knowledge discovery and data mining, pp 74–81

    Google Scholar 

  • Su K, Huang H, Wu X, Zhang S (2006) A logical framework for identifying quality knowledge from different data sources. Decis Support Syst 42(3):1673–1683

    Article  Google Scholar 

  • Tan P-N, Kumar V, Steinbach M (2006) Introduction to data mining. Pearson Education, Boston

    Google Scholar 

  • Wang JT, Zaki MJ, Toivonen HT, Shasha DE (2005) Data mining in bioinformatics. Springer, London

    Google Scholar 

  • Wilkinson (2009) Grid computing: techniques and applications. CRC Press, Boca Raton

    Google Scholar 

  • Wu X, Zhang S (2003) Synthesizing high-frequency rules from different data sources. IEEE Trans Knowl Data Eng 14(2):353–367

    Google Scholar 

  • Wu X, Zhang C, Zhang S (2005) Database classification for multi-database mining. Inf Syst 30(1):71–88

    Article  MATH  Google Scholar 

  • Yan J, Liu N, Yang Q, Zhang B, Cheng Q, Chen Z (2006) Mining adaptive ratio rules from distributed data sources. Data Min Knowl Disc 12(2–3):249–273

    Article  MathSciNet  Google Scholar 

  • Yi X, Zhang Y (2007) Privacy-preserving distributed association rule mining via semi-trusted mixer. Data Knowl Eng 63(2):550–567

    Article  Google Scholar 

  • Yin X, Han J (2005) Efficient classification from multiple heterogeneous databases. In: Proceedings of 9th European conference on principles and practice of knowledge discovery in databases, pp 404–416

    Google Scholar 

  • Zhan J, Matwina S, Chang LW (2006) Privacy-preserving collaborative association rule mining. J Netw Comput Appl 30(3):1216–1227

    Article  Google Scholar 

  • Zhang S, Wu X, Zhang C (2003) Multi-database mining. IEEE Comput Intell Bull 2(1):5–13

    Google Scholar 

  • Zhang C, Liu M, Nie W, Zhang S (2004a) Identifying global exceptional patterns in multi-database mining. IEEE Comput Intell Bull 3(1):19–24

    Google Scholar 

  • Zhang S, Zhang C, Wu X (2004b) Knowledge discovery in multiple databases. Springer, London

    Google Scholar 

  • Zhang S, You X, Jin Z, Wu X (2009) Mining globally interesting patterns from multiple databases using kernel estimation. Expert Syst Appl 36(8):10863–10869

    Article  Google Scholar 

  • Zhao F, Guibas L (2004) Wireless sensor networks: an information processing approach. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Zhong S (2007) Privacy-preserving algorithms for distributed mining of frequent itemsets. Inf Sci 177(2):490–503

    Article  MATH  Google Scholar 

  • Zhong N, Yao YY, Ohshima M, Ohsuga S (2001) Interestingness, peculiarity, and multi-database mining. In: Proceedings of ICDM, pp 566–576

    Google Scholar 

  • Zhu X, Wu X (2007) Discovering relational patterns across multiple databases. In: Proceedings of ICDE, pp 726–735

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Animesh Adhikari .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adhikari, A., Adhikari, J., Pedrycz, W. (2014). Introduction. In: Data Analysis and Pattern Recognition in Multiple Databases. Intelligent Systems Reference Library, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-03410-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03410-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03409-6

  • Online ISBN: 978-3-319-03410-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics