Skip to main content

Advanced Control and Optimization Techniques in AC Drives and DC/AC Sine Wave Voltage Inverters: Selected Problems

  • Chapter
  • First Online:
Advanced and Intelligent Control in Power Electronics and Drives

Part of the book series: Studies in Computational Intelligence ((SCI,volume 531))

Abstract

This chapter presents the application of a particle swarm optimization (PSO) to a controller tuning in selected power electronic and drive systems. The chapter starts with a relatively simple tuning of a cascaded PI speed and position control system for a BLDC servo drive. This example serves as the background for a discussion on selecting the objective function for the PSO. Then the PSO is used in two challenging controller tuning tasks. This includes optimizing selected learning parameters in the adaptive artificial neural network (ANN) based online trained speed controller for an urban vehicle (3D problem) and selecting penalty factors in the LQR with augmented state (i.e. with oscillatory terms) for a three-phase four-leg sine wave inverter (15D problem). It is demonstrated with the help of these case studies why and where the PSO, or any other similar population based stochastic search algorithm, can be beneficial. Engineers encounter many non-straightforward controller tuning problems in power electronic systems and this chapter illustrates that in some cases it is relatively easy to reduce these tasks into the objective function selection problem. The relevant controller parameters are then determined automatically by the PSO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.C. Eberhart, Y. Shi, J. Kennedy, Swarm Intelligence, 1st edn. (The Morgan Kaufmann Series in Evolutionary Computation, Morgan Kaufmann Publishers, Burlington, 2001)

    Google Scholar 

  2. A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. Part I: background and development. Nat. Comput. 6(4), 467–484 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat. Comput. 7(1), 109–124 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Wolpert, W. Macready, No free lunch theorems for optimization. IEEE Trans. Evolut. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  5. R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evolut. Comput. 8(3), 204–210 (2004)

    Article  Google Scholar 

  6. J. Fernandez-Marquez, J. Arcos, Adapting particle swarm optimization in dynamic and noisy environments, in IEEE Congress on Evolutionary Computation (CEC 2010) (2010), pp. 1–8

    Google Scholar 

  7. X. Hu, R. Eberhart, Multiobjective optimization using dynamic neighborhood particle swarm optimization, in, Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), vol. 2, pp. 1677–1681, 2002

    Google Scholar 

  8. A. Röhler, S. Chen, An analysis of sub-swarms in multi-swarm systems, in AI 2011: Advances in Artificial Intelligence, vol. 7106, Lecture Notes in Computer Science, ed. by D. Wang, M. Reynolds (Springer, Berlin, 2011), pp. 271–280

    Chapter  Google Scholar 

  9. J. Kennedy, R. Mendes, Neighborhood topologies in fully informed and best-of-neighborhood particle swarms. IEEE Trans. Syst. Man Cyber. Part C Appl. Rev. 36(4), 515–519 (2006)

    Article  Google Scholar 

  10. J. Robinson, Y. Rahmat-Samii, Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 52(2), 397–407 (2004)

    Article  MathSciNet  Google Scholar 

  11. M.A. Rahimian, M.S. Tavazoei, Improving integral square error performance with implementable fractional-order PI controllers. Optimal Control Appl. Methods (In press) (2013)

    Google Scholar 

  12. I.C. Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection. Info. Process. Lett. 85(6), 317–325 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. K. Zielinski, R. Laur, Stopping criteria for a constrained single-objective particle swarm optimization algorithm. Informatica (Slovenia) 31(1), 51–59 (2007)

    MATH  Google Scholar 

  14. J. Riget, J. Vesterstrøm, A diversity-guided particle swarm optimizer—the ARPSO. Technical report (Aarhus Universitet, Aarhus, 2002)

    Google Scholar 

  15. K.J. Åström, T. Hägglund, PID Controllers: Theory, Design, and Tuning, 2 edn. (Instrument Society of America, Research Triangle Park, Charlotte, 1995)

    Google Scholar 

  16. K.J. Åström, T. Hägglund, Revisiting the Ziegler–Nichols step response method for PID control. J. Process Control 14(6), 635–650 (2004)

    Article  Google Scholar 

  17. M. Joost, K. Zielinski, B. Orlik, R. Laur, Robust PI cascade control for a multi-mass system optimized by evolutionary algorithms, in, The 13th Power Electronics and Motion Control Conference, (EPE-PEMC 2008) (2008), pp. 1064–1070

    Google Scholar 

  18. T. Nussbaumer, M. Heldwein, G. Gong, S. Round, J. Kolar, Comparison of prediction techniques to compensate time delays caused by digital control of a three-phase buck-type PWM rectifier system. IEEE Trans. Ind. Electron. 55(2), 791–799 (2008)

    Article  Google Scholar 

  19. J.W. Choi, S.C. Lee, H.G. Kim, Inertia identification algorithm for high-performance speed control of electric motors. IEEE Proc. Electr. Power Appl. 153(3), 379–386 (2006)

    Google Scholar 

  20. M.O. Efe, in Neural Network-based Control, ed. by B.M. Wilamowski, J.D. Irwin. The Industrial Electronics Handbook: Intelligent Systems, vol. 3 (CRC Press, Boca Raton, 2011)

    Google Scholar 

  21. J. Sarangapani, Neural Network Control of Nonlinear Discrete-Time Systems, (CRC Press, Boca Raton, 2006)

    Google Scholar 

  22. P. Potocnik, I. Grabec, Adaptive self-tuning neurocontrol. Math. Comput. Simulat. 51, 201–207 (2000)

    Article  MathSciNet  Google Scholar 

  23. Y.C. Wang, C.J. Chien, D.T. Lee, An output recurrent fuzzy neural network based iterative learning control for nonlinear systems, in IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2008), IEEE World Congress on Computational Intelligence (2008), pp. 1563–1569

    Google Scholar 

  24. Q. Zhu, L. Guo, Stable adaptive neurocontrol for nonlinear discrete-time systems. IEEE Trans. Neural Netw. 15(3), 653–662 (2004)

    Article  Google Scholar 

  25. J.H. Park, S.H. Kim, C.J. Moon, Adaptive neural control for strict-feedback nonlinear systems without backstepping. IEEE Trans. Neural Netw. 20(7), 1204–1209 (2009)

    Article  MathSciNet  Google Scholar 

  26. J. Levin, N. Perez-Arancibia, P. Ioannou, T.C. Tsao, A neural-networks-based adaptive disturbance rejection method and its application to the control of hard disk drives. IEEE Trans. Magnet. 45(5), 2140–2150 (2009)

    Article  Google Scholar 

  27. T. Pajchrowski, K. Zawirski, Application of artificial neural network to robust speed control of servodrive. IEEE Trans. Ind. Electron. 54(1), 200–207 (2007)

    Article  Google Scholar 

  28. T. Orlowska-Kowalska, K. Szabat, Control of the drive system with stiff and elastic couplings using adaptive neuro-fuzzy approach. IEEE Trans. Ind. Electron. 54(1), 228–240 (2007)

    Article  Google Scholar 

  29. L. Grzesiak, V. Meganck, J. Sobolewski, B. Ufnalski, On-line trained neural speed controller with variable weight update period for direct-torque-controlled AC drive, in 12th International Power Electronics and Motion Control Conference (EPE-PEMC 2006) (2006), pp. 1127–1132

    Google Scholar 

  30. L. Grzesiak, V. Meganck, J. Sobolewski, B. Ufnalski, Genetic algorithm for parameters optimization of ANN-based speed controller, in The International Conference on Computer as a Tool (EUROCON 2007) (2007), pp. 1700–1705

    Google Scholar 

  31. C. Igel, M. Hüsken, Empirical evaluation of the improved Rprop learning algorithms. Neurocomputing 50, 105–123 (2003)

    Article  MATH  Google Scholar 

  32. B. Ufnalski, L. Grzesiak, Artificial neural network based voltage controller for the single phase true sine wave inverter—a repetitive control approach. Electr. Rev. (Przeglad Elektrotechniczny, paper in English, open access at pe. org. pl), 89(4), 14–18 (2013)

    Google Scholar 

  33. B. Ufnalski, L. Grzesiak, Particle swarm optimization of artificial-neural-network-based on-line trained speed controller for battery electric vehicle. Bull. Polish Acad. Sci. Tech. Sci. 60(3), 661–667 (2012)

    Google Scholar 

  34. D. De, V. Ramanarayanan, A proportional + multiresonant controller for three-phase four-wire high-frequency link inverter. IEEE Trans. Power Electron. 25(4), 899–906 (2010)

    Article  Google Scholar 

  35. G. Bonan, O. Mano, L. Pereira, D. Coutinho, Robust control design of multiple resonant controllers for sinusoidal tracking and harmonic rejection in uninterruptible power supplies, in IEEE International Symposium on Industrial Electronics (ISIE 2010) (2010), pp. 303–308

    Google Scholar 

  36. M. Dai, M. Marwali, J.W. Jung, A. Keyhani, A three-phase four-wire inverter control technique for a single distributed generation unit in island mode. IEEE Trans. Power Electron. 23(1), 322–331 (2008)

    Article  Google Scholar 

  37. C. Liu, F. Blaabjerg, W. Chen, D. Xu, Stator current harmonic control with resonant controller for doubly fed induction generator. IEEE Trans. Power Electron. 27(7), 3207–3220 (2012)

    Article  Google Scholar 

  38. A. Hasanzadeh, C.S. Edrington, B. Maghsoudlou, F. Fleming, H. Mokhtari, Multi-loop linear resonant voltage source inverter controller design for distorted loads using the linear quadratic regulator method. Power Electron. IET 5(6), 841–851 (2012)

    Article  Google Scholar 

  39. A. Kaszewski, L. Grzesiak, B. Ufnalski, Multi-oscillatory LQR for a three-phase four-wire inverter with L3nC output filter, in 38th Annual Conference on IEEE Industrial Electronics Society (IECON 2012) (2012), pp. 3449–3455

    Google Scholar 

  40. S. Karanki, M. Mishra, B. Kumar, Particle swarm optimization-based feedback controller for unified power-quality conditioner. IEEE Trans. Power Deliv. 25(4), 2814–2824 (2010)

    Article  Google Scholar 

  41. J. Wang, B. Brackett, R. Harley, Particle swarm-assisted state feedback control: from pole selection to state estimation, in American Control Conference (ACC 2009) (2009), pp. 1493–1498

    Google Scholar 

  42. A. Hasanzadeh, C. Edrington, J. Leonard, Y. Liu, VSI optimal controller tuning with LQR-based gain space determination and PSO finalization in LEV drive, in IEEE Vehicle Power and Propulsion Conference (VPPC 2011) (2011), pp. 1–6

    Google Scholar 

  43. F. Gene, J.D.P. Franklin, M.L. Workman, Digital Control of Dynamic Systems, 3rd edn. (Addison Wesley Longman, Boston, 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barłomiej Ufnalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ufnalski, B., Grzesiak, L.M., Kaszewski, A. (2014). Advanced Control and Optimization Techniques in AC Drives and DC/AC Sine Wave Voltage Inverters: Selected Problems. In: Orłowska-Kowalska, T., Blaabjerg, F., Rodríguez, J. (eds) Advanced and Intelligent Control in Power Electronics and Drives. Studies in Computational Intelligence, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-319-03401-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03401-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03400-3

  • Online ISBN: 978-3-319-03401-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics