Skip to main content

Predictive Control in Power Electronics and Drives: Basic Concepts, Theory, and Methods

  • Chapter
  • First Online:
Advanced and Intelligent Control in Power Electronics and Drives

Part of the book series: Studies in Computational Intelligence ((SCI,volume 531))

Abstract

In this chapter we revise basic principles and methods of model predictive control with a view towards applications in power electronics and drives. The simplest predictive control formulations use horizon-one cost functions, which can be related to well-established dead-beat controllers. Model predictive control using larger horizons has the potential to give significant performance benefits, but requires more computations at each sampling instant to solve the associated optimization problems. For particular classes of system models, we discuss practical algorithms, which make long-horizon predictive control suitable for power electronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the weighting functions should be chosen such that \( V( \cdot , \cdot ) \) depends on the decision variables contained in \( {\mathbf{u^{\prime}}}(k) \), see (7).

  2. 2.

    It is important to remark that in the case that \( B \in {\mathbb{R}}^{n \times n} \), with B nonsingular, we have that \( B^{\dag } = B^{ - 1} \). Thus, the control law (14) is a particular case of (15).

  3. 3.

    Alternatively, one can also penalize the size of the increments of the control input via a term of the form \( (u(k) - u(k - 1))^{T} R(u(k) - u(k - 1)) \).

  4. 4.

    When considering linear time-invariant (LTI) systems, inverse behavior is equivalent to non-minimum phase behavior, i.e. systems with zeros in the right half-plane of the Laplace domain.

  5. 5.

    Note that (37) contains the third term \( x^{T} (k){\mathbf{S}}^{T} {\mathbf{S}}x(k) \). Since this term is constant and independent of \( {\mathbf{u}}(k) \), it can be omitted in the cost function without affecting the result of the optimization problem.

  6. 6.

    For the cost function the constant term in (37) has been neglected. The inequality constraints can be derived by substituting (35) into the state constraints and adding the input constraints.

  7. 7.

    To simplify the notation, in (50, 50b, 50c) we dropped \( \alpha \beta \) from the vectors \( i_{s} ,\,\psi_{r} \) and \( v_{s} \).

  8. 8.

    The notation \( {\mathbf{H}}_{(i,1:i)} \) refers to the first i entries of the i-th row of \( {\mathbf{H}} \); similarly, \( {\mathbf{u}}_{1:i} \) are the first i elements of the vector \( {\mathbf{u}} \). Note that the matrix \( {\mathbf{H}} \) is time-invariant and does not change when running the algorithm. Therefore, \( {\mathbf{H}} \) can be computed once offline before the execution of the algorithm.

  9. 9.

    Note that, \( E_{\text{sw}} \) is a function of the inverter current i, which in turn is either a state variable or a linear combination of the state vector x.

References

  1. E. Agrell, T. Eriksson, A. Vardy, K. Zeger, Closest point search in lattices. IEEE Trans. Inform. Theory 48(8), 2201–2214 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. R.P. Aguilera, D.E. Quevedo, Capacitor voltage estimation for predictive control algorithm of flying capacitor converters, in IEEE International Conference on Industrial Technology (Melbourne, 2009)

    Google Scholar 

  3. R.P. Aguilera, D.E. Quevedo, On stability and performance of finite control set MPC for power converters, in Workshop on Predictive Control of Electrical Drives and Power Electronics (PRECEDE) (2011), pp. 55–62

    Google Scholar 

  4. R.P. Aguilera, D.E. Quevedo, Stability analysis of quadratic MPC with a discrete input alphabet. IEEE Trans. Autom. Control (2013), 58(12), pp. 3190–3196

    Google Scholar 

  5. K.J. Åström, B. Wittenmark, Computer-Controlled Systems: Theory and Design, 3rd edn. (Prentice Hall, Upper Saddle River, 1997)

    Google Scholar 

  6. A.G. Beccuti, G. Papafotiou, M. Morari, Explicit model predictive control of the boost dc-dc converter, in Proceedings of the 2nd IFAC Conference on Analysis and Design of Hybrid Systems (Alghero, 2006)

    Google Scholar 

  7. A. Bemporad, F. Borrelli, M. Morari, Model predictive control based on linear programming—the explicit solution. IEEE Trans. Autom. Control 47(12), 1974–1985 (2002)

    Article  MathSciNet  Google Scholar 

  8. A. Bemporad, M. Morari, Control of systems integrating logic, dynamics and constraints. Automatica 35(3), 407–427 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Bemporad, M. Morari, V. Dua, E.N. Pistikopoulos, The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Bolognani, S. Bolognani, L. Peretti, M. Zigliotto, Design and implementation of model predictive control for electrical motor drives. IEEE Trans. Industr. Electron. 56(6), 1925–1936 (2009)

    Article  Google Scholar 

  11. F. Borrelli, Constrained OPTIMAL Control of Linear and Hybrid Systems, LNCIS, vol. 290 (Springer, Berlin, 2003)

    Google Scholar 

  12. F. Borrelli, M. Baotić, A. Bemporad, M. Morari, Dynamic programming for constrained optimal control of discrete-time linear hybrid systems. Automatica 41(10), 1709–1721 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Borrelli, A. Bemporad, M. Morari, Geometric algorithm for multiparametric linear programming. J. Optim. Theory Appl. 118(3), 515–540 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. G.S. Buja, Optimum output waveforms in PWM inverters. IEEE Trans. Ind. Appl. 16(6), 830–836 (1980)

    Article  Google Scholar 

  15. T. Burtscher, T. Geyer, Deadlock avoidance in model predictive direct torque control. IEEE Trans. Ind. Appl. 49(5), 2126–2135 (Raleigh, 2013)

    Google Scholar 

  16. R. Cagienard, P. Grieder, E. Kerrigan, M. Morari, Move blocking strategies in receding horizon control. J. Process Control 17, 563–570 (2007)

    Article  Google Scholar 

  17. E.F. Camacho, C. Bordons, Model Predictive Control (Springer, New York, 1999)

    Book  Google Scholar 

  18. D.W. Clarke, C. Mohtadi, P.S. Tuffs, Generalized predictive control—part I. The basic algorithm. Automatica 23(2), 137–148 (1987)

    Article  MATH  Google Scholar 

  19. P. Correa, M. Pacas, J. Rodrguez, Predictive torque control for inverter-fed induction machines. IEEE Trans. Industr. Electron. 54(2), 1073–1079 (2007)

    Article  Google Scholar 

  20. P. Cortés, M.P. Kazmierkowski, R.M. Kennel, D.E. Quevedo, J. Rodríguez, Predictive control in power electronics and drives. IEEE Trans. Industr. Electron. 55(12), 4312–4324 (2008)

    Article  Google Scholar 

  21. P. Cortés, G. Ortiz, J.I. Yuz, J. Rodríguez, S. Vazquez, L. Franquelo, Model predictive control of an inverter with output filter for UPS applications. IEEE Trans. Industr. Electron. 56(6), 1875–1883 (2009)

    Article  Google Scholar 

  22. P. Cortés, J. Rodríguez, S. Vazquez, L. Franquelo, Predictive control of a three-phase UPS inverter using two steps prediction horizon, in Proceedings IEEE International Conference Industrial Technology (Viña del Mar, 2010), pp. 1283–1288

    Google Scholar 

  23. M. Cychowski, K. Szabat, T. Orlowska-Kowalska, Constrained model predictive control of the drive system with mechanical elasticity. IEEE Trans. Industr. Electron. 56(6), 1963–1973 (2009)

    Article  Google Scholar 

  24. A. Domahidi, A. Zgraggen, M. Zeilinger, M. Morari, C. Jones, Efficient interior point methods for multistage problems arising in receding horizon control, in IEEE Conference on Decision and Control (Maui, 2010), pp. 668–674

    Google Scholar 

  25. V. Dua, N.A. Bozinis, E.N. Pistikopoulos, A multiparametric programming approach for mixed-integer quadratic engineering problems. Comput. Chemical Eng. 26(4–5), 715–733 (2002)

    Article  Google Scholar 

  26. V. Dua, E.N. Pistikopoulos, An algorithm for the solution of multiparametric mixed integer linear programming problems. Ann. Oper. Res. 123–139 (2000)

    Google Scholar 

  27. U. Fincke, M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comput. 44(170), 463–471 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Fletcher, A general quadratic programming algorithm. IMA J. Appl. Math. 7(1), 76–91 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  29. E.J. Fuentes, C.A. Silva, J.I. Yuz, Predictive speed control of a two-mass system driven by a permanent magnet synchronous motor. IEEE Trans. Industr. Electron. 59(7), 2840–2848 (2012)

    Article  Google Scholar 

  30. F. Garofalo, P. Marino, S. Scala, F. Vasca, Control of DC/DC converters with linear optimal feedback and nonlinear feed forward. IEEE Trans. Power Electron. 9(6), 607–615 (1994)

    Article  Google Scholar 

  31. A. Gersho, R.M. Gray, Vector Quantization and Signal Compression (Kluwer Academic, Boston, 1992)

    Book  MATH  Google Scholar 

  32. T. Geyer, Low complexity model predictive control in power electronics and power systems. Ph.D. Thesis, Automatic Control Laboratory ETH Zurich (2005)

    Google Scholar 

  33. T. Geyer, Generalized model predictive direct torque control: long prediction horizons and minimization of switching losses, in IEEE Conference on Decision and Control (Shanghai, 2009), pp. 6799–6804

    Google Scholar 

  34. T. Geyer, A comparison of control and modulation schemes for medium-voltage drives: emerging predictive control concepts versus PWM-based schemes. IEEE Trans. Ind. Appl. 47(47), 1380–1389 (2011)

    MathSciNet  Google Scholar 

  35. T. Geyer, Computationally efficient model predictive direct torque control. IEEE Trans. Power Electron. 26(10), 2804–2816 (2011)

    Article  Google Scholar 

  36. T. Geyer, Model predictive direct current control: formulation of the stator current bounds and the concept of the switching horizon. IEEE Ind. Appl. Mag. 18(2), 47–59 (2012)

    Article  Google Scholar 

  37. T. Geyer, R.P. Aguilera, D.E. Quevedo, On the stability and robustness of model predictive direct current control, in Proceedings of the IEEE International Conference on Industrial Technology, Cape Town, South Africa (2013)

    Google Scholar 

  38. T. Geyer, N. Oikonomou, G. Papafotiou, F. Kieferndorf, Model predictive pulse pattern control. IEEE Trans. Ind. Appl. 48(2), 663–676 (2012)

    Article  Google Scholar 

  39. T. Geyer, G. Papafotiou, Direct torque control for induction motor drives: A model predictive control approach based on feasibility, in Hybrid Systems: Computation and Control, ed. by M. Morari, L. Thiele, LNCS, vol. 3414 (Springer, NewYork, 2005), pp. 274–290

    Google Scholar 

  40. T. Geyer, G. Papafotiou, R. Frasca, M. Morari, Constrained optimal control of the step-down dc-dc converter. IEEE Trans. Power Electron. 23(5), 2454–2464 (2008)

    Article  Google Scholar 

  41. T. Geyer, G. Papafotiou, M. Morari, On the optimal control of switch-mode dc-dc converters, in Hybrid Systems: Computation and Control, ed. by R. Alur, G. Pappas, LNCS, vol. 2993 (Springer, New York, 2004), pp. 342–356

    Google Scholar 

  42. T. Geyer, G. Papafotiou, M. Morari, Hybrid model predictive control of the step-down dc-dc converter. IEEE Trans. Control Syst. Technol. 16(6), 1112–1124 (2008)

    Article  Google Scholar 

  43. T. Geyer, G. Papafotiou, M. Morari, Model predictive direct torque control–-Part I: Concept, algorithm and analysis. IEEE Trans. Industr. Electron. 56(6), 1894–1905 (2009)

    Article  Google Scholar 

  44. T. Geyer, D.E. Quevedo, Multistep direct model predictive control for power electronics – Part 1: Algorithm, in Proceedings of the Energy Conversion Congress and Exposition (ECCE) (2013)

    Google Scholar 

  45. T. Geyer, D.E. Quevedo, Multistep direct model predictive control for power electronics – Part 2: Analysis, in Proceedings of the Energy Conversion Congress and Exposition (ECCE) (2013)

    Google Scholar 

  46. T. Geyer, J. Scoltock, U. Madawala, Model predictive direct power control for grid-connected converters, in Proceedings of the IEEE Industrial Electronics Society Annual Conference, Melbourne, Australia (2011)

    Google Scholar 

  47. T. Geyer, F. Torrisi, M. Morari, Optimal complexity reduction of polyhedral piecewise affine systems. Automatica 44(7), 1728–1740 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  48. T. Geyer, F. Torrisi, M. Morari, Efficient mode enumeration of compositional hybrid systems. Int. J. Control 83(2), 313–329 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  49. G. Goodwin, D. Mayne, K.Y. Chen, C. Coates, G. Mirzaeva, D. Quevedo, An introduction to the control of switching electronic systems. Ann. Rev. Control 34(2), 209–220 (2010)

    Article  Google Scholar 

  50. G.C. Goodwin, M.M. Serón, J.A. De Doná, Constrained Control & Estimation – An Optimization Perspective (Springer, London, 2005)

    Google Scholar 

  51. L. Grüne, J. Panne, Nonlinear Model Predictive Control: Theory and Algorithms (Springer, New York, 2011)

    Google Scholar 

  52. L. Grüne, A. Rantzer, On the infinite horizon performance of receding horizon controllers. IEEE Trans. Autom. Control 53(9), 2100–2111 (2008)

    Article  Google Scholar 

  53. B. Hassibi, H. Vikalo, On the sphere-decoding algorithm I. Expected complexity. IEEE Trans. Signal Process. 53(8), 2806–2818 (2005)

    Article  MathSciNet  Google Scholar 

  54. W.P.M.H. Heemels, B. De Schutter, A. Bemporad, Equivalence of hybrid dynamical models. Automatica 37(7), 1085–1091 (2001)

    Article  MATH  Google Scholar 

  55. J. Holtz, The representation of AC machine dynamics by complex signal graphs. IEEE Trans. Industr. Electron. 42(3), 263–271 (1995)

    Article  Google Scholar 

  56. J.S. Hu, K.Y. Chen, Analysis and design of the receding horizon constrained optimization for class-D amplifier driving signals. Digital Signal Process. 20, 1511–1525 (2010)

    Article  Google Scholar 

  57. IBM ILOG, Inc., CPLEX 12.5 User Manual. Somers, NY, USA (2012)

    Google Scholar 

  58. S.G. Jeong, M.H. Woo, DSP-based active power filter with predictive current control. IEEE Trans. Industr. Electron. 44(3), 329–336 (1997)

    Article  Google Scholar 

  59. J. Jerez, G. Constantinides, E. Kerrigan, An FPGA implementation of a sparse quadratic programming solver for constrained predictive control, in Proceedings of the ACM/SIGDA International Symposium FPGA, pp. 209–218 (2011)

    Google Scholar 

  60. P. Karamanakos, T. Geyer, S. Manias, Direct voltage control of DC-DC boost converters using model predictive control based on enumeration, in Proceedings of the International Power Electronics and Motion Control Conference, Novi Sad, Serbia (2012)

    Google Scholar 

  61. N. Karmarkar, A new polynomial-time algorithm for linear programming, in Proceedings of the ACM Symposium Theory Computing, pp. 302–311 (1984)

    Google Scholar 

  62. W. Karush, Minima of functions of several variables with inequalities as side constraints. Master’s thesis, University of Chicago, Chicago, IL, USA (1939)

    Google Scholar 

  63. R. Kennel, A. Linder, M. Linke, Generalized predictive control (GPC) – ready for use in drive applications ? in Proceedings of the IEEE Power Electronics Specialists Conference (PESC), pp. 1839–1844. Vancouver, Canada (2001)

    Google Scholar 

  64. F. Kieferndorf, P. Karamanakos, P. Bader, N. Oikonomou, T. Geyer, Model predictive control of the internal voltages of a five-level active neutral point clamped converter, in Proceedings of the IEEE Energy Conversion Congress and Exposition, Raleigh, NC, USA (2012)

    Google Scholar 

  65. S. Kouro, P. Cortés, R. Vargas, U. Ammann, J. Rodrguez, Model Predictive Control–A Simple and Powerful Method to Control Power Converters. IEEE Trans. Industr. Electron. 56(6), 1826–1838 (2009)

    Article  Google Scholar 

  66. M. Kozlov, S. Tarasov, L. Khachiyan, The polynomial solvability of convex quadratic programming. USSR Comput. Math. Math. Physics 20(5), 223–228 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  67. P.C. Krause, O. Wasynczuk, S.D. Sudhoff, Analysis of Electric Machinery and Drive Systems, 2nd edn. (John Wiley & Sons Inc, New York, 2002)

    Google Scholar 

  68. H. Kuhn, A. Tucker, Nonlinear programming, in Proceedings of the 2nd Berkeley Symposium Mathmatical Statistics and Probability, pp. 481–492 (1951)

    Google Scholar 

  69. O. Kukrer, Discrete-time current control of voltage-fed three-phase PWM inverters. IEEE Trans. Power Electron. 11(2), 260–269 (1996)

    Article  Google Scholar 

  70. M. Kvasnica, P. Grieder, M. Baotić, M. Morari, Multi parametric toolbox (MPT), in Hybrid Systems: Computation and Control, LNCS, ed. by R. Alur, G. Pappas, vol. 2993 (Springer, 2004), pp. 448–462. http://control.ee.ethz.ch/~mpt

  71. E.L. Lawler, D.E. Wood, Branch and bound methods: A survey. Op. Res. 14(4), 699–719 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  72. B. Lehman, R.M. Bass, Extensions of averaging theory for power electronic systems. IEEE Trans. Power Electron. 11(4), 542–553 (1996)

    Article  Google Scholar 

  73. P. Lezana, R.P. Aguilera, D.E. Quevedo, Model predictive control of an asymmetric flying capacitor converter. IEEE Trans. Industr. Electron. 56(6), 1839–1846 (2009)

    Article  Google Scholar 

  74. A. Linder, R. Kennel, Model predictive control for electrical drives, in Proceedings of the IEEE Power Electronics Specialists Conference (PESC), (Recife, Brazil, 2005), pp. 1793–1799

    Google Scholar 

  75. K.S. Low, X. Zhuang, Robust model predictive control and observer for direct drive applications. IEEE Trans. Power Electron. 15(6), 1018–1028 (2000)

    Article  Google Scholar 

  76. J.M. Maciejowski, Predictive Control with Constraints (Prentice-Hall, Englewood Cliffs, 2002)

    Google Scholar 

  77. L. Malesani, P. Mattavelli, S. Buso, Robust dead-beat current control for PWM rectifiers and active filters. IEEE Trans. Ind. Appl. 35(3), 613–620 (1999)

    Article  Google Scholar 

  78. S. Mariéthoz, S. Almér, M. Bâja, A. Beccuti, D. Patino, A. Wernrud, J. Buisson, H. Cormerais, H. Fujioka, T. Geyer, U. Jönsson, C.Y. Kao, M. Morari, G. Papafotiou, A. Rantzer, P. Riedinger, Comparison of hybrid control techniques for buck and boost DC-DC converters. IEEE Trans. Control Syst. Technol. 18(5), 1126–1145 (2010)

    Article  Google Scholar 

  79. S. Mariethoz, A. Beccuti, G. Papafotiou, M. Morari, Sensorless explicit model predictive control of the dc-dc buck converter with inductor current limitation, in Proceedings of the Applied Power Electronics Conference and Exposition (2008), pp. 1710–1715

    Google Scholar 

  80. S. Mariéthoz, A. Domahidi, M. Morari, High-bandwidth explicit model predictive control of electrical drives. IEEE Trans. Ind. Appl. 48(6), 1980–1992 (2012)

    Article  Google Scholar 

  81. S. Mariéthoz, M. Morari, Explicit model predictive control of a PWM inverter with an LCL filter. IEEE Trans. Industr. Electron. 56(2), 389–399 (2009)

    Article  Google Scholar 

  82. P. Mattavelli, An improved deadbeat control for UPS using disturbance observers. IEEE Trans. Industr. Electron. 52(1), 206–212 (2005)

    Article  Google Scholar 

  83. D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert, Constrained model predictive control: Optimality and stability. Automatica 36(6), 789–814 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  84. L.G. Mitten, Branch–and–bound methods: General formulation and properties. Op. Res. 18(1), 24–34 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  85. Y.A.R.I. Mohamed, E.F. El-Saadany, An improved deadbeat current control scheme with a novel adaptive self-tuning load model for a three-phase PWM voltage-source inverter. IEEE Trans. Industr. Electron. 54(2), 747–759 (2007)

    Article  Google Scholar 

  86. J. Mossoba, P.W. Lehn, A controller architecture for high bandwidth active power filters. IEEE Trans. Power Electron. 18(1), 317–325 (2003)

    Article  Google Scholar 

  87. T. Murata, T. Tsuchiya, I. Takeda, Vector control for induction machine on the application of optimal control theory. IEEE Trans. Industr. Electron. 37(4), 283–290 (1990)

    Article  Google Scholar 

  88. Y. Nesterov, A method of solving a convex programming problem with convergence rate O(1/k2). Soviet Math. Dokl. 27(2), 372–386 (1983)

    MATH  Google Scholar 

  89. Y. Nesterov, A. Nemirovskii, Interior-point polynomial algorithms in convex programming. SIAM (1994)

    Google Scholar 

  90. Y. Nishida, O. Miyashita, T. Haneyoshi, H. Tomita, A. Maeda, A predictive instantaneous-current PWM controlled rectifier with AC-side harmonic current reduction. IEEE Trans. Industr. Electron. 44(3), 337–343 (1997)

    Article  Google Scholar 

  91. N. Oikonomou, C. Gutscher, P. Karamanakos, F. Kieferndorf, T. Geyer, Model predictive pulse pattern control for the five-level active neutral point clamped inverter. IEEE Trans. Ind. Appl. 49(6), 2583–2592, Raleigh, NC, USA (2013)

    Google Scholar 

  92. J. Østergaard, D.E. Quevedo, J. Jensen, Real-time perceptual moving-horizon multiple-description audio coding. IEEE Trans. Signal Process. 59(9), 4286–4299 (2011)

    Google Scholar 

  93. G. Papafotiou, T. Geyer, M. Morari, Optimal direct torque control of three-phase symmetric induction motors, in Proceedings of the IEEE Conference on Decision and Control, Atlantis, Bahamas (2004)

    Google Scholar 

  94. G. Papafotiou, T. Geyer, M. Morari, A hybrid model predictive control approach to the direct torque control problem of induction motors (invited paper). Int. J. Robust Nonlinear Control 17(17), 1572–1589 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  95. G. Papafotiou, J. Kley, K.G. Papadopoulos, P. Bohren, M. Morari, Model predictive direct torque control–Part II: Implementation and experimental evaluation. IEEE Trans. Industr. Electron. 56(6), 1906–1915 (2009)

    Article  Google Scholar 

  96. H.S. Patel, R.G. Hoft, Generalized techniques of harmonic elimination and voltage control in thyristor inverters: Part I-Harmonic elimination. IEEE Trans. Ind. Appl. 9(3), 310–317 (1973)

    Article  Google Scholar 

  97. S.J. Qin, T.A. Badgwell, A survey of industrial model predictive control technology. Contr. Eng. Pract. 11, 733–764 (2003)

    Article  Google Scholar 

  98. D.E. Quevedo, R.P. Aguilera, M.A. Pérez, P. Cortés, R. Lizana, Model predictive control of an AFE rectifier with dynamic references. IEEE Trans. Power Electron. 27(7), 3128–3136 (2012)

    Article  Google Scholar 

  99. D.E. Quevedo, H. Bölcskei, G.C. Goodwin, Quantization of filter bank frame expansions through moving horizon optimization. IEEE Trans. Signal Process. 57(2), 503–515 (2009)

    Article  MathSciNet  Google Scholar 

  100. D.E. Quevedo, G.C. Goodwin, Control of EMI from switch-mode power supplies via multi-step optimization, in Proceedings of the American Control Conference, vol. 1, pp. 390–395. Boston, MA (2004)

    Google Scholar 

  101. D.E. Quevedo, G.C. Goodwin, Moving horizon design of discrete coefficient FIR filters. IEEE Trans. Signal Process. 53(6), 2262–2267 (2005)

    Article  MathSciNet  Google Scholar 

  102. D.E. Quevedo, G.C. Goodwin, Multistep optimal analog-to-digital conversion. IEEE Trans. Circuits Syst. I 52(4), 503–515 (2005)

    Article  Google Scholar 

  103. D.E. Quevedo, G.C. Goodwin, J.A. De Doná, Finite constraint set receding horizon quadratic control. Int. J. Robust Nonlin. Contr. 14(4), 355–377 (2004)

    Article  MATH  Google Scholar 

  104. D.E. Quevedo, G.C. Goodwin, J.A. De Doná, Multistep detector for linear ISI-channels incorporating degrees of belief in past estimates. IEEE Trans. Commun. 55(11), 2092–2103 (2007)

    Article  Google Scholar 

  105. D.E. Quevedo, D. Nešić, Robust stability of packetized predictive control of nonlinear systems with disturbances and Markovian packet losses. Automatica 48(8), 1803–1811 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  106. D.E. Quevedo, J. Østergaard, D. Nešić, Packetized predictive control of stochastic systems over bit-rate limited channels with packet loss. IEEE Trans. Autom. Control 56(12), 2854–2868 (2011)

    Google Scholar 

  107. J.B. Rawlings, D.Q. Mayne, Model Predictive Control: Theory and Design (Nob Hill Publishing, Madison, 2009)

    Google Scholar 

  108. S. Richter, C. Jones, M. Morari, Real-time input-constrained MPC using fast gradient methods, in Proceedings of the IEEE Conference on Decision and Control, pp. 7387–7393. Shanghai, China (2009)

    Google Scholar 

  109. S. Richter, S. Mariéthoz, M. Morari, High-speed online MPC based on fast gradient method applied to power converter control, in Proceedings of the American Control Conference, Baltimore, MD, USA (2010)

    Google Scholar 

  110. J. Rodríguez, P. Cortés, Predictive Control of Power Converters and Electrical Drives, 1 edn. (Wiley-IEEE Press, Chichester, 2012)

    Google Scholar 

  111. J. Rodríguez, M.P. Kazmierkowski, J. Espinoza, P. Zanchetta, H. Abu-Rub, H.A. Young, C.A. Rojas, State of the art of finite control set model predictive control in power electronics. IEEE Trans. Industr. Inf. 9(2), 1003–1016 (2013)

    Article  Google Scholar 

  112. J. Rodríguez, J. Pontt, C. Silva, P. Correa, P. Lezana, P. Cortés, U. Ammann, Predictive current control of a voltage source inverter. IEEE Trans. Industr. Electron. 54(1), 495–503 (2007)

    Article  Google Scholar 

  113. S. Saggini, W. Stefanutti, E. Tedeschi, P. Mattavelli, Digital deadbeat control tuning for dc-dc converters using error correlation. IEEE Trans. Power Electron. 22(4), 1566–1570 (2007)

    Article  Google Scholar 

  114. J. Scoltock, T. Geyer, U. Madawala, A comparison of model predictive control schemes for MV induction motor drives. IEEE Trans. Industr. Inf. 9(2), 909–919 (2013)

    Article  Google Scholar 

  115. M. Serón, G.C. Goodwin, J.A. De Doná, Characterisation of receding horizon control for constrained linear systems. Asian J. Contr. 5(2), 271–286 (2003)

    Article  Google Scholar 

  116. E. Sontag, Nonlinear regulation: The piecewise linear approach. IEEE Trans. Autom. Control 26(2), 346–358 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  117. P. Stolze, P. Landsmann, R. Kennel, T. Mouton, Finite-set model predictive control of a flying capacitor converter with heuristic voltage vector preselection, in Proceedings of the IEEE International Conference on Power Electronics and ECCE Asia (2011)

    Google Scholar 

  118. J. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones (1998)

    Google Scholar 

  119. I. Takahashi, T. Noguchi, A new quick response and high efficiency control strategy for the induction motor. IEEE Trans. Ind. Appl. 22(2), 820–827 (1986)

    Article  Google Scholar 

  120. P. Tøndel, T.A. Johansen, A. Bemporad, An algorithm for multi-parametric quadratic programming and explicit MPC solutions, in Proceedings of the IEEE Conference on Decision and Control, Orlando, Florida (2001)

    Google Scholar 

  121. P. Tøndel, T.A. Johansen, A. Bemporad, Evaluation of piecewise affine control via binary search tree. Automatica 39(5), 945–950 (2003)

    Article  MathSciNet  Google Scholar 

  122. F.D. Torrisi, A. Bemporad, Hysdel – a tool for generating computational hybrid models for analysis and synthesis problems. IEEE Trans. Control Syst. Technol. 12(2), 235–249 (2004)

    Article  MathSciNet  Google Scholar 

  123. A. Wächter, L. Biegler, On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  124. S.M. Yang, C.H. Lee, A deadbeat current controller for field oriented induction motor drives. IEEE Trans. Power Electron. 17(5), 772–778 (2002)

    Article  Google Scholar 

  125. Y. Zeinaly, T. Geyer, B. Egardt, Trajectory extension methods for model predictive direct torque control, in Proceedings of the Applied Power Electronics Conference and Exposition, pp. 1667–1674. Fort Worth, TX, USA (2011)

    Google Scholar 

  126. Q. Zeng, L. Chang, An advanced svpwm-based predictive current controller for three-phase inverters in distributed generation systems. IEEE Trans. Industr. Electron. 55(3), 1235–1246 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

Research supported under Australian Research Council’s Discovery Projects funding scheme (project number DP 110103074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Quevedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Quevedo, D.E., Aguilera, R.P., Geyer, T. (2014). Predictive Control in Power Electronics and Drives: Basic Concepts, Theory, and Methods. In: Orłowska-Kowalska, T., Blaabjerg, F., Rodríguez, J. (eds) Advanced and Intelligent Control in Power Electronics and Drives. Studies in Computational Intelligence, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-319-03401-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03401-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03400-3

  • Online ISBN: 978-3-319-03401-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics