Space Vector Modulation in Three-Phase Three-Level Flying Capacitor Converter-Fed Adjustable Speed Drive

Part of the Studies in Computational Intelligence book series (SCI, volume 531)


This Chapter is devoted to the Space Vector Modulation (SVM) in three-phase three-level Flying Capacitor Converter (FCC) fed adjustable speed drive (ADS). First, the classical and adaptive SVM are described. The adaptive SVM provides reduction of number of switching in the whole linear range of the converter operation because minimal number of vectors is used in each modulation region. As result, switching losses in FCC are reduced in comparison to the classical SVM and thus, the converter efficiency is increased. Next, elimination of DC sources unbalance in full range of operation of the FCC is presented. The minimization of the flying capacitors voltages pulsation is obtained by the compensation of flying capacitors voltages balancing delay based on prediction of those voltages values in next modulation period. Finally, taking to account the requirements of the demanding ASD application: low speed operation without phase current distortion and the high speed operation over the linear range of the converter with reference output voltage amplitude, the additional features for both modulation techniques: the dead-time effect and semiconductor devices voltage drop compensation as well as the overmodulation algorithm are shown.


  1. 1.
    J. Rodriguez, J.S. Lai, F.Z. Peng, Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 49(4), 724–738 (2002)CrossRefGoogle Scholar
  2. 2.
    R.J. Rodriguez, S. Bernet, B. Wu, J.O. Pontt, S. Kouro, Multilevel voltage–source–converter topologies for industrial medium–voltage drives. IEEE Trans. Ind. Electron. 54(6), 2930–2945 (2007)CrossRefGoogle Scholar
  3. 3.
    L.G. Franquelo, J. Rodriguez, J.I. Leon, S. Kouro, R. Portillo, M.A.M. Prats, The age of multilevel converters arrives. IEEE Ind. Electron. Mag. 2(2), 28–39 (2008)CrossRefGoogle Scholar
  4. 4.
    J. Rodriguez, L. G. Franquelo, S. Kouro, J. I. Leon, R. C. Portillo, M. A. M. Prats, M. A. Perez, Multilevel converters: an enabling technology for high–power applications, in Proceedings of the IEEE, vol. 97, no. 11, pp. 1786–1817, Nov 2009Google Scholar
  5. 5.
    B.K. Bose, Power electronics and motor drives recent progress and perspective. IEEE Trans. Ind. Electron. 56(2), 581–588 (2009)CrossRefGoogle Scholar
  6. 6.
    S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L.G. Franquelo, B. Wu, J. Rodriguez, M.A. Perez, J.I. Leon, Recent advances and industrial applications of multilevel converters. IEEE Trans. Ind. Electron. 57(8), 2553–2580 (2010)CrossRefGoogle Scholar
  7. 7.
    H. Akagi, New trends in medium-voltage power converters and motor drives, in Proceedings of IEEE (ISIE), pp. 5–14, Jun 2011Google Scholar
  8. 8.
    A. Nabae, I. Takahashi, H. Akagi, A new neutral–point–clamped PWM inverter. IEEE Trans. Ind. Appl. 17(5), 518–523 (1981)CrossRefGoogle Scholar
  9. 9.
    T. A. Meynard, H. Foch, Multi–level conversion: high voltage choppers and voltage–source inverters, in Proceedings of IEEE PESC 1992, vol. 1, pp. 397–403, Jun/Jul 1992Google Scholar
  10. 10.
    O. Alonso, L. Marroyo, P. Sanchis, E. Gubia, A. Guerrero, Analysis of neutral–point voltage balancing problem in three–level neutral–point–clamped inverters with svpwm modulation, in Proceedings of IEEE IECON 2002, pp. 920–925, Nov 2002Google Scholar
  11. 11.
    S. Busquets-Monge, J. Bordonau, D. Boroyevich, S. Somavilla, The nearest three virtual space vector pwm—a modulation for the comprehensive neutral-point balancing in the three-level npc inverter. IEEE Power Electron. Lett. 2(1), 11–15 (2004)CrossRefGoogle Scholar
  12. 12.
    J. Pou, R. Pindado, D. Boroyevich, P. Rodriguez, J. Vicente, Voltage balancing strategies for diode-clamped multilevel converters, in Proceedings of IEEE PESC 2004, pp. 3988–3993, Jun 2004Google Scholar
  13. 13.
    W. Kolomyjski, Modulation strategies for three–level pwm converter–fed induction machine drive, Ph.D. dissertation, Warsaw University of Technology, Warsaw, Poland, 2009Google Scholar
  14. 14.
    G. Zongzhi, L. Yujie, Z. Jia, L. Fei, T. Q. Zheng, Voltage utilization ratio increasing and neutral point potential balancing of npc inverter based on zero sequence voltage for linear induction motor drive, in Proceedings of IEEE IPEMC 2009, pp. 1045–1049, May 2009Google Scholar
  15. 15.
    K. S. Kumar, S. De, K. Gopakumar, G. Mondal, K. Corzine, Neutral–point balancing of neutral–point–clamped three–level inverter with a front end switched rectifier dc source for the full modulation range, IET Power Electron., pp. 527–234, Sept 2009Google Scholar
  16. 16.
    J. Pou, P. Rodriguez, V. Sala, S. Busquets-Monge, D. Boroyevich, Algorithm for the virtual vectors modulation in three–level inverters with a voltage–balance control loop, in Proceedings of the European Conference on Power Electronics and Applications, pp. 1–9, Sept 2005Google Scholar
  17. 17.
    P. Barbosa, P. Steimer, J. Steinke, L. Meysenc, M. Winkelnkemper, N. Celanovic, Active neutral–point–clamped multilevel converters, in Proceedings of IEEE PESC 1995, pp. 2296–2301, Jul 1995Google Scholar
  18. 18.
    J. Meili, S. Ponnaluri, L. Serpa, P. K. Steimer, J. W. Kolar, Optimized pulse patterns for the 5–level anpc converter for high speed high power applications, in Proceedings of IEEE IECON 2006, pp. 2587–2592, Nov 2006Google Scholar
  19. 19.
    F. Defay, A.M. Llor, M. Fadel, A predictive control with flying capacitor balancing of a multicell active power filter. IEEE Trans. Ind. Electron. 55(9), 3212–3220 (2008)CrossRefGoogle Scholar
  20. 20.
    J. Hu, L. Zhang, S. J. Watkins, Active power filtering by a flying-capacitor multilevel inverter with capacitor voltage balance, in Proceedings of IEEE ISIE 2008, pp. 2348–2352, Jul 2008Google Scholar
  21. 21.
    D.G. Holmes, T.A. Lipo, Pulse Width Modulation for Power Converters Principles and Practice (Wiley-IEEE Press, New York, 2003)CrossRefGoogle Scholar
  22. 22.
    B.P. McGrath, D.G. Holmes, Natural capacitor voltage balancing for a flying capacitor converter induction motor drive. IEEE Trans. Power Electron. Lett. 24(6), 1554–1561 (2009)CrossRefGoogle Scholar
  23. 23.
    B.P. McGrath, D.G. Holmes, Analytical determination of the capacitor voltage balancing dynamics for three phase flying capacitor converters. IEEE Trans. Ind. Electron. 45(4), 1425–1433 (2009)Google Scholar
  24. 24.
    S. Stynski, Analysis and control of multilevel AC–DC–AC flying capacitor converter fed from single–phase grid, Ph.D. Dissertation, Warsaw University of Technology, Warsaw, Poland, 2011Google Scholar
  25. 25.
    S. Lee, D. Kang, Y. Lee, D. Hyun, The carrier–based pwm method for voltage balance of flying capacitor multilevel converter, in Proceedings of IEEE PESC 2001, pp. 126–131, Jun 2001Google Scholar
  26. 26.
    J. Rodriguez, Tutorial on multilevel converters, in Proceedings of the International Conference PELINCEC 2005, Oct 2005Google Scholar
  27. 27.
    C. Feng, J. Liang, V.G. Agelidis, Modified phase–shifted pwm control for flying capacitor multilevel converters. IEEE Trans. Power Electron. 22(1), 178–185 (2007)CrossRefGoogle Scholar
  28. 28.
    B. P. McGrath, D. G. Holmes, Enhanced voltage balancing of a flying capacitor multilevel converter using phase disposition (pd) modulation, in Proceedings of IEEE ECCE 2009, pp. 3108–3115, Nov 2009Google Scholar
  29. 29.
    M. A. S. Mendes, Z. M. A. Peixoto, P. F. Seixas, P. Donoso-Garcia, A space vector pwm method for three–level flying–capacitor inverters, in Proceedings of IEEE PESC 2001, pp. 182–187, Jun 2001Google Scholar
  30. 30.
    S. J. Watkins, L. Zhang, Multilevel space vector pwm control schemes for a flying–capacitor inverter, in Proceedings of PEMD 2004, pp. 12–17, Mar/Apr 2004Google Scholar
  31. 31.
    S. Choi, M. Saeedifard, A space vector modulation approach for capacitor voltage balancing of flying capacitor converters, in Proceedings of IEEE APEC 2007, pp. 1174–1179, Mar 2007Google Scholar
  32. 32.
    M. J. Waite, L. Zhang, Analysis and comparison of 3d–svm schemes for flying–capacitor multi–level inverters, in Proceedings of EPE 2009, pp. 1–10, Sep 2009Google Scholar
  33. 33.
    S. Stynski, Space vector pwm modulator reducing switching losses for three–level flying–capacitor inverters, in Proceedings of IEEE ISIE 2010, pp. 3912–3917, 4–7 July 2010Google Scholar
  34. 34.
    J. W. Kolar, H. Ertl, F. C. Zach, Influence of the modulation method on the conduction and switching losses of a pwm converter system, IEEE Trans. Ind. Appl., 27(6), pp. 1063–1075, Nov/Dec 1991Google Scholar
  35. 35.
    S. J. Watkins, L. Zhang, Influence of multilevel sinusoidal pwm schemes on the performance of a flying–capacitor inverter, in Proceedings of PEMD 2002, pp. 92–97, Jun 2002Google Scholar
  36. 36.
    M. Bierhoff, H. Brandenburg, F. W. Fuchs, An analysis on switching loss optimized pwm strategies for three phase pwm voltage source converters, in 33rd Annual Conference of the IEEE Industrial Electronics Society, pp. 1512–1517, Nov 2007Google Scholar
  37. 37.
    L. Won-Kyo, K. S.-Y. Y. J.-S. Yoon, B. Doo-Hyun, A comparison of the carrier–based pwm techniques for voltage balance of flying capacitor in the flying capacitor multilevel inverter, in Proceedings of IEEE APEC 2006, pp. 1653–1658, Mar 2006Google Scholar
  38. 38.
    S. Thielemans, A. Ruderman, B. Reznikov, J. Melkebeek, Improved natural balancing with modified phase shifted pwm for single–leg five–level flying–capacitor converters. IEEE Trans. Power Electron. 27(4), 1658–1667 (2012)CrossRefGoogle Scholar
  39. 39.
    A. Shukla, A. Ghosh, A. Joshi, Natural balancing of flying capacitor voltages in multicell inverter under pd carrier–based pwm. IEEE Trans. Power Electron. 26(6), 1682–1693 (2011)CrossRefGoogle Scholar
  40. 40.
    E.R.C. da Silva, E.C. dos Santos, C.B. Jacobina, Pulse width modulation strategies. IEEE Ind. Electron. Mag. 5(2), 37–45 (2011)CrossRefGoogle Scholar
  41. 41.
    D.G. Holmes, The significance of zero space vector placement for carrier-based pwm schemes. IEEE Trans. Ind. Appl. 32(5), 1122–1129 (1996)CrossRefGoogle Scholar
  42. 42.
    F. Jenni and D. Wueest, The optimization parameters of space vector modulation, in Proceedings of EPE 1993, pp. 376–381, Sept 1993Google Scholar
  43. 43.
    R. Wilkinson, H. du Mouton, T. Meynard, Natural balance of multicell converters: the general case. IEEE Trans. Power Electron. 21(6), 1658–1666 (2006)CrossRefGoogle Scholar
  44. 44.
    M. Malinowski, Sensorless control strategies for three–phase pwm rectifiers, Ph.D. Dissertation, Warsaw University of Technology, Warsaw, Poland, 2001Google Scholar
  45. 45.
    T. Bruckner, D. G. Holmes, Optimal pulse-width modulation for three-level inverters, in Proceedings of the IEEE Power Electronics Specialist, vol. 20, no. 1, pp. 82–87, Jan 2005Google Scholar
  46. 46.
    S.-G. Jeong, M.-H. Park, The analysis and compensation of deadtime effects in pwm inverters. IEEE Trans. Ind. Electron. 38(2), 108–114 (1991)CrossRefMathSciNetGoogle Scholar
  47. 47.
    L. Ben-Brahim, On the compensation of dead time and zero-current crossing for a pwm–inverter–controlled ac servo drive. IEEE Trans. Ind. Electron. 51(5), 1113–1118 (2004)CrossRefGoogle Scholar
  48. 48.
    D. Leggate, R.J. Kerkman, Pulse–based dead-time compensator for pwm voltage inverters. IEEE Trans. Ind. Electron. 44(2), 191–197 (1997)CrossRefGoogle Scholar
  49. 49.
    A.C. Oliveira, C.B. Jacobina, A.M.N. Lima, Improved dead-time compensation for sinusoidal pwm inverters operating at high switching frequencies. IEEE Trans. Ind. Electron. 54(4), 2295–2304 (2007)CrossRefGoogle Scholar
  50. 50.
    Z. Dongsheng, D.G. Rouaud, Dead-time effect and compensations of three-level neutral point clamp inverters for high-performance drive applications. IEEE Trans. Power Electron. 14(4), 782–788 (1999)CrossRefGoogle Scholar
  51. 51.
    IRG4BC20UDPBF Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode (2010) International Rectifier, Jan 2010, available:
  52. 52.
    S.R. Minshull, C.M. Bingham, D.A. Stone, M.P. Foster, Compensation of nonlinearities in diode-clamped multilevel converters. IEEE Trans. Ind. Electron. 57(8), 2651–2658 (2010)CrossRefGoogle Scholar
  53. 53.
    J. Holtz, W. Lotzkat, A.M. Khambadkone, On continuous control of pwm inverters in the overmodulation range including the six-step mode. IEEE Trans. Power Electron. 8(4), 546–553 (1993)CrossRefGoogle Scholar
  54. 54.
    D.-C. Lee, G.-M. Lee, A novel overmodulation technique for space–vector pwm inverters. IEEE Trans. Power Electron. 13(6), 1144–1151 (1998)CrossRefGoogle Scholar
  55. 55.
    A.K. Gupta, A.M. Khambadkone, A general space vector pwm algorithm for multilevel inverters, including operation in overmodulation range. IEEE Trans. Power Electron. 22(2), 517–526 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Warsaw University of TechnologyWarsawPoland

Personalised recommendations