Introduction to Renewable Energy Systems

  • Ke MaEmail author
  • Yongheng Yang
  • Frede Blaabjerg
Part of the Studies in Computational Intelligence book series (SCI, volume 531)


In this chapter, the state-of-the-arts developments of renewable energy are reviewed in respect to the installed power and market share, where wind power and photovoltaic power generation are the main focuses due to the fast growing speed and large share of installed capacity. Some basic principles of operation, mission profiles, as well as power electronics solutions and corresponding controls are discussed respectively in the case of wind power and photovoltaic power systems. Finally a few development trends for renewable energy conversions are also given from a power electronics point of view. It is concluded that as the quick development of renewable energy, wind power and PV power both show great potential to be largely integrated into the power grid. Power electronics is playing essential role in both of the systems to achieve more controllable, efficient, and reliable energy production—which is crucial for the cost reduction and spread use of renewable energies, because their fluctuated and unpredicted features are un-preferred for the operation of the power grid. Meanwhile there are also some emerging challenges and considerations in the renewable energy conversion system, calling for more advanced controls as well as configurations of power electronics converter.


Wind Turbine Wind Power Maximum Power Point Tracking Wind Turbine System Power Electronic Converter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wikipedia, Renewable Energy, Sep 2013.
  2. 2.
    Report of Danish Commission on Climate Change Policy, Green Energy - the road to a Danish energy system without fossil fuels, Sept 2010.
  3. 3.
    REN21 - Renewables 2012 Global Status Report, June 2012.
  4. 4.
    F. Blaabjerg, K. Ma, Future on power electronics for wind turbine systems. IEEE J. Emerg. Sel. Top. Power Electron. 1(3), 139–152 (2013)CrossRefGoogle Scholar
  5. 5.
    F. Blaabjerg, Z. Chen, S.B. Kjaer, Power Electronics as Efficient Interface in Dispersed Power Generation Systems. IEEE Trans. Power Electron. 19(4), 1184–1194 (2004)CrossRefGoogle Scholar
  6. 6.
    K. Ma, M. Liserre, F. Blaabjerg, Lifetime estimation for the power semiconductors considering mission profiles in wind power converter, in Proceedings of ECCE’ 2013, Sep 2013Google Scholar
  7. 7.
    E. Wolfgang, L. Amigues, N. Seliger, G. Lugert, Building-in reliability into power electronics systems. The World of Electronic Packaging and System Integration, pp. 246–252 (2005)Google Scholar
  8. 8.
    D. Hirschmann, D. Tissen, S. Schroder, R.W. De Doncker, Inverter design for hybrid electrical vehicles considering mission profiles, in IEEE Conference on Vehicle Power and Propulsion, pp. 1–6, 7–9 Sept 2005Google Scholar
  9. 9.
    C. Busca, R. Teodorescu, F. Blaabjerg, S. Munk-Nielsen, L. Helle, T. Abeyasekera, P. Rodriguez, An overview of the reliability prediction related aspects of high power IGBTs in wind power applications. Microelectron. Reliab. 51(9–11), 1903–1907 (2011)CrossRefGoogle Scholar
  10. 10.
    E. Wolfgang, Examples for failures in power electronics systems. Paper presented at ECPE Tutorial on Reliability of Power Electronic Systems, Nuremberg, Germany, April 2007Google Scholar
  11. 11.
    S. Yang, A.T. Bryant, P.A. Mawby, D. Xiang, L. Ran, P. Tavner, An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441–1451 (2011)Google Scholar
  12. 12.
    A. Isidori, F.M. Rossi, F. Blaabjerg, K. Ma, Thermal loading and reliability of 10 MW multilevel wind power converter at different wind roughness classes. IEEE Trans. Ind. Appl. (2013)Google Scholar
  13. 13.
    Z. Chen, J.M. Guerrero, F. Blaabjerg, A review of the state of the art of power electronics for wind turbines. IEEE Trans. Power Electron. 24(8), 1859–1875 (2009)CrossRefGoogle Scholar
  14. 14.
    F. Blaabjerg, M. Liserre, K. Ma, Power electronics converters for wind turbine systems. IEEE Trans. Ind. Appl. 48(2), 708–719 (2012)CrossRefGoogle Scholar
  15. 15.
    M. Altin, O. Goksu, R. Teodorescu, P. Rodriguez, B. Bak-Jensen, L. Helle, Overview of recent grid codes for wind power integration, in Proceedings of OPTIM’2010, pp. 1152–1160 (2010)Google Scholar
  16. 16.
    M. Tsili, A review of grid code technical requirements for wind farms. IET J. Renew. Power Gener. 3(3), 308–332 (2009)CrossRefGoogle Scholar
  17. 17.
    Energinet – Wind turbines connected to grids with voltages below 100 kV, Jan 2003Google Scholar
  18. 18.
    Energinet – Technical regulation 3.2.5 for wind power plants with a power output greater than 11 kW, Sept 2010Google Scholar
  19. 19.
    E.ON-Netz – Grid Code. Requirements for offshore grid connections in the E.ON Netz network, April 2008Google Scholar
  20. 20.
    F. Blaabjerg, K. Ma, High power electronics – Key technology for wind turbines, chapter 6, in Power electronics for renewable energy systems, transportation and industrial applications. (Wiley, New York, 2013)Google Scholar
  21. 21.
    S. Muller, M. Deicke, R.W. De Doncker, Doubly fed induction generator systems for wind turbines. IEEE Ind. Appl. Mag. 8(3), 26–33 (2002)Google Scholar
  22. 22.
    D. Xiang, L. Ran, P.J. Tavner, S. Yang, Control of a doubly fed induction generator in a wind turbine during grid fault ride-through. IEEE Trans. Energy Convers. 21(3), 652–662 (2006)CrossRefGoogle Scholar
  23. 23.
    F.K.A. Lima, A. Luna, P. Rodriguez, E.H. Watanabe, F. Blaabjerg, Rotor voltage dynamics in the doubly fed induction generator during grid faults. IEEE Trans. Power Electron. 25(1), 118–130 (2010)Google Scholar
  24. 24.
    D. Santos-Martin, J.L. Rodriguez-Amenedo, S. Arnaltes, Providing ride-through capability to a doubly fed induction generator under unbalanced voltage dips. IEEE Trans. Power Electron. 24(7), 1747–1757 (2009)CrossRefGoogle Scholar
  25. 25.
    R. Pena, J.C. Clare, G.M. Asher, Doubly fed induction generator using back-to-back PWM converters and its application to variable speed wind-energy generation. Electric Power Application 143(3), 231–241 (1996)CrossRefGoogle Scholar
  26. 26.
    J. Rodriguez, S. Bernet, W. Bin, J.O. Pontt, S. Kouro, Multilevel voltage-source-converter topologies for industrial medium-voltage drives. IEEE Trans. Ind. Electron. 54(6), 2930–2945 (2007)Google Scholar
  27. 27.
    S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L.G. Franquelo, B. Wu, J. Rodriguez, M.A. Perez, J.I. Leon, Recent advances and industrial applications of multilevel converters. IEEE Trans. Power Electron. 57(8), 2553–2580 (2010)Google Scholar
  28. 28.
    A. Faulstich, J.K. Stinke, F. Wittwer, Medium voltage converter for permanent magnet wind power generators up to 5 MW, in Proceedings of EPE 2005, pp. 1–9 (2005)Google Scholar
  29. 29.
    N. Celanovic, D. Boroyevich, A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clamped voltage source PWM inverters. IEEE Trans. Power Electron. 15(2), 242–249 (2000)CrossRefGoogle Scholar
  30. 30.
    S. Srikanthan, M.K. Mishra, DC capacitor voltage equalization in neutral clamped inverters for DSTATCOM application. IEEE Trans. Ind. Electron. 57(8), 2768–2775 (2010)Google Scholar
  31. 31.
    J. Zaragoza, J. Pou, S. Ceballos, E. Robles, C. Jaen, M. Corbalan, Voltage-balance compensator for a carrier-based modulation in the neutral-point-clamped converter. IEEE Trans. Ind. Electron. 56(2), 305–314 (2009)CrossRefGoogle Scholar
  32. 32.
    K. Ma, F. Blaabjerg, D. Xu, Power devices loading in multilevel converters for 10 MW wind turbines, in Proceedings of ISIE 2011, pp. 340–346, June 2011Google Scholar
  33. 33.
    K. Ma, F. Blaabjerg, Multilevel converters for 10 MW wind turbines, in Proceedings of EPE’2011, Birmingham, pp. 1–10 (2011)Google Scholar
  34. 34.
    J. Rodriguez, S. Bernet, P.K. Steimer, I.E. Lizama, A survey on neutral-point-clamped inverters. IEEE Trans. Ind. Electron. 57(7), 2219–2230 (2010)CrossRefGoogle Scholar
  35. 35.
    B. Andresen, J. Birk, A high power density converter system for the Gamesa G10x 4.5 MW wind turbine, in Proceedings of EPE’2007, pp. 1–7 (2007)Google Scholar
  36. 36.
    R. Jones, P. Waite, Optimised power converter for multi-MW direct drive permanent magnet wind turbines, in Proceedings of EPE’2011, pp. 1–10 (2011)Google Scholar
  37. 37.
    B. Engel, M. Victor, G. Bachmann, A. Falk, 15 kV/16.7 Hz energy supply system with medium frequency transformer and 6.5 kV IGBTs in resonant operation, in Proceedings of EPE’2003, Toulouse, France, 2–4 Sept 2003Google Scholar
  38. 38.
    S. Inoue, H. Akagi, A bidirectional isolated DC–DC converter as a core circuit of the next-generation medium-voltage power conversion system. IEEE Trans. Power Electron. 22(2), 535–542 (2007)CrossRefGoogle Scholar
  39. 39.
    F. Iov, F. Blaabjerg, J. Clare, O. Wheeler, A. Rufer, A. Hyde, UNIFLEX-PM-A key-enabling technology for future European electricity networks. EPE J. 19(4), 6–16 (2009)Google Scholar
  40. 40.
    M. Davies, M. Dommaschk, J. Dorn, J. Lang, D. Retzmann, D. Soerangr, HVDC PLUS – Basics and Principles of Operation, Siemens Technical articles (2008)Google Scholar
  41. 41.
    A. Lesnicar, R. Marquardt, An innovative modular multilevel converter topology suitable for a wide power range, in Proceedings of IEEE Bologna PowerTech Conference, pp. 1–6 (2003)Google Scholar
  42. 42.
    M.S. El-Moursi, B. Bak-Jensen, M.H. Abdel-Rahman, Novel STATCOM controller for mitigating SSR and damping power system oscillations in a series compensated wind park. IEEE Trans. Power Electron. 25(2), 429–441 (2010)CrossRefGoogle Scholar
  43. 43.
    J. Dai, D.D. Xu, B. Wu, A novel control scheme for current-source-converter-based PMSG wind energy conversion systems. IEEE Trans. Power Electron. 24(4), 963–972 (2009)CrossRefGoogle Scholar
  44. 44.
    X. Yuan, F. Wang, D. Boroyevich, Y. Li, R. Burgos, DC-link Voltage Control of a Full Power Converter for Wind Generator Operating in Weak-Grid Systems. IEEE Trans. on Power Electron. 24(9), 2178–2192 (2009)CrossRefGoogle Scholar
  45. 45.
    P. Rodriguez, A. Timbus, R. Teodorescu, M. Liserre, F. Blaabjerg, Reactive power control for improving wind turbine system behavior under grid faults. IEEE Trans. Power Electron. 24(7), 1798–1801 (2009)CrossRefGoogle Scholar
  46. 46.
    A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, F. Blaabjerg, Evaluation of current controllers for distributed power generation systems. IEEE Trans. Power Electron. 24(3), 654–664 (2009)CrossRefGoogle Scholar
  47. 47.
    M. Liserre, F. Blaabjerg, S. Hansen, Design and control of an LCL-filter-based three-phase active rectifier. IEEE Trans. Ind. Appl. 41(5), 1281–1291 (2005)Google Scholar
  48. 48.
    P. Rodriguez, A.V. Timbus, R. Teodorescu, M. Liserre, F. Blaabjerg, Flexible active power control of distributed power generation systems during grid faults. IEEE Trans. Ind. Electron. 54(5), 2583–2592 (2007)CrossRefGoogle Scholar
  49. 49.
    R. Teodorescu, M. Liserre, P. Rodriguez, in Grid Converters for Photovoltaic and Wind Power Systems. Wiley, New York (2011)Google Scholar
  50. 50.
    F. Blaabjerg, R. Teodorescu, M. Liserre, A.V. Timbus, Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53(5), 1398–1409 (2006)CrossRefGoogle Scholar
  51. 51.
    Website of Vestas Wind Power, Wind turbines overview, April 2011.
  52. 52.
    UpWind project, Design limits and solutions for very large wind turbines, March 2011.
  53. 53.
    Wikipedia Cost of electricity by source, April 2013.
  54. 54.
    Report of the International Renewable Energy Angency (IRENA), Renewable Power Generation Costs in 2012: An Overview, Released in 2013.
  55. 55.
    S. Faulstich, P. Lyding, B. Hahn, P. Tavner, Reliability of offshore turbines–identifying the risk by onshore experience, in Proceedings of European Offshore Wind, Stockholm (2009)Google Scholar
  56. 56.
    B. Hahn, M. Durstewitz, K. Rohrig, Reliability of wind turbines – experience of 15 years with 1500 WTs, in Wind Energy, ed. by J. Peinke, P. Schaumann S. Barth (Springer, Berlin, 2007), pp. 329–332Google Scholar
  57. 57.
    K.O. Kovanen, Photovoltaics and power distribution. Renew. Energy Focus 14(3), 20–21 (2013)Google Scholar
  58. 58.
    Y. Xue, K.C. Divya, G. Griepentrog, M. Liviu, S. Suresh, M. Manjrekar, Towards next generation photovoltaic inverters, in Proceedings of ECCE’11, pp. 2467–2474, 17–22 Sept 2011Google Scholar
  59. 59.
    C. Winneker, World’s solar photovoltaic capacity passes 100-gigawatt landmark after strong year [Online], Feb 2013.
  60. 60.
    J.D. van Wyk, F.C. Lee, On a future for power electronics. IEEE J. Emerg. Sel. Top. Power Electron. 1(2), 59–72 (2013)Google Scholar
  61. 61.
    M. Braun, T. Stetz, R. Brundlinger, C. Mayr, K. Ogimoto, H. Hatta, H. Kobayashi, B. Kroposki, B. Mather, M. Coddington, K. Lynn, G. Graditi, A. Woyte, I. MacGill, Is the distribution grid ready to accept large-scale photovoltaic deployment? State of the art, progress, and future prospects. Prog. Photovolt: Res. Appl. 20(6), 681–697 (2012)CrossRefGoogle Scholar
  62. 62.
    F. Blaabjerg, R. Teodorescu, M. Liserre, A.V. Timbus, Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53(5), 1398–1409 (2006)CrossRefGoogle Scholar
  63. 63.
    S.B. Kjaer, J.K. Pedersen, F. Blaabjerg, A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans. Ind. Appl. 41(5), 1292–1306 (2005)Google Scholar
  64. 64.
    S.B. Kjaer, Design and Control of an Inverter for Photovoltaic Applications, PhD Thesis, Department of Energy Technology, Aalborg University, Aalborg, Denmark, Jan 2005Google Scholar
  65. 65.
    Wikipedia, Solar cell, Sept 2013.
  66. 66.
    A. Luque, S. Hegedus, in Handbook of Photovoltaic Science and Engineering, second version (Wiley, New York, 2011)Google Scholar
  67. 67.
    F. Iov, M. Ciobotaru, D. Sera, R. Teodorescu, F. Blaabjerg, Power electronics and control of renewable energy systems, in Proceedings of PEDS’07, pp. P-6–P-28, 27–30, Nov 2007Google Scholar
  68. 68.
    M. Ciobotaru, R. Teodorescu, F. Blaabjerg, Control of single-stage single-phase PV inverter, in Proceedings of EPE’05, pp. P.1–P.10 (2005)Google Scholar
  69. 69.
    E. Koutroulis, F. Blaabjerg, A New technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions. IEEE J. Photovoltaics 2(2), 184–190 (2012)CrossRefGoogle Scholar
  70. 70.
    H. Wang, M. Liserre, F. Blaabjerg, Toward reliable power electronics - challenges, design tools and opportunities. IEEE Ind. Electron. Mag. 7(2), 17–26 (2013)CrossRefGoogle Scholar
  71. 71.
    H. Huang, P.A. Mawby, A lifetime estimation technique for voltage source inverters. IEEE Trans. Power Electron. 28(8), 4113–4119 (2013)CrossRefGoogle Scholar
  72. 72.
    Y. Yang, H. Wang, F. Blaabjerg, and K. Ma, Mission profile based multi-disciplinary analysis of power modules in single-phase transformerless photovoltaic inverters, in Proceedings of EPE ECCE Europe’13, pp. P.1–P.10, Sept 2013Google Scholar
  73. 73.
    Photovoltaic Research Group, Department of Energy Technology, Aalborg University.
  74. 74.
    IEEE-SA Standards Board, IEEE Std 929-2000: IEEE recommended practice for utility interface of photovoltaic (PV) systems, Jan 2000Google Scholar
  75. 75.
    Y. Yang, F. Blaabjerg, Z. Zou, Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems. IEEE Trans. Ind. Appl. 49(5), 2167–2176 (2013)Google Scholar
  76. 76.
    Y. Yang, F. Blaabjerg, H. Wang, Low voltage ride-through of single-phase transformerless photovoltaic inverters. IEEE Trans. Ind. Appl. May/Jun 2014.
  77. 77.
    N.P. Papanikolaou, Low-voltage ride-through concept in flyback inverter-based alternating current- photovoltaic modules. IET Power Electron. 6(7), 1436–1448 (2013)CrossRefGoogle Scholar
  78. 78.
    Y. Bae, T.-K. Vu, R.-Y. Kim, Implemental control strategy for grid stabilization of grid-connected PV system based on german grid code in symmetrical low-to-medium voltage network. IEEE Trans. Energy Convers. 28(3), 619–631 (2013)CrossRefGoogle Scholar
  79. 79.
    E. Koutroulis, F. Blaabjerg, Design optimization of transformer-less grid-connected pv inverters including reliability. IEEE Trans. Power Electron. 28(1), 325–335 (2013)CrossRefGoogle Scholar
  80. 80.
    D. Meneses, F. Blaabjerg, O. García, J.A. Cobos, Review and comparison of step-up transformerless topologies for photovoltaic AC-module application. IEEE Trans. Power Electron. 28(6), 2649–2663(2013)Google Scholar
  81. 81.
    SMA, SUNNY CENTRAL- High tech solution for solar power stations. Products Category Brochure.
  82. 82.
    M. Meinhardt, G. Cramer, Multi-string-converter: the next step in evolution of string-converter technology, in Proceedings of EPE’01, pp. P.1–P.9 (2001)Google Scholar
  83. 83.
    S.V. Araujo, P. Zacharias, R. Mallwitz, Highly efficient single-phase transformerless inverters for grid-connected PV systems. IEEE Trans. Ind. Electron. 57(9), 3118–3128 (2010)CrossRefGoogle Scholar
  84. 84.
    R. Gonzalez, J. Lopez, P. Sanchis, L. Marroyo, Transformerless inverter for single-phase photovoltaic systems. IEEE Trans. Power Electron. 22(2), 693–697 (2007)CrossRefGoogle Scholar
  85. 85.
    S.R. Gonzalez, C.J. Coloma, P.L. Marroyo, T.J. Lopez, G.P. Sanchis, Single-phase inverter circuit for conditioning and converting dc electrical energy into ac electrical, International Patent Application, Pub. No. WO/2008/015298, 7 Feb 2008Google Scholar
  86. 86.
    T. Kerekes, R. Teodorescu, P. Rodriguez, G. Vazquez, E. Aldabas, A new high-efficiency single-phase transformerless PV inverter topology. IEEE Trans. Ind. Electron. 58(1), 184–191 (2011)CrossRefGoogle Scholar
  87. 87.
    H. Schmidt, S. Christoph, J. Ketterer, Current inverter for direct/alternating currents, has direct and alternating connections with an intermediate power store, a bridge circuit, rectifier diodes and a inductive choke, German Patent DE10 221 592 A1, 4 Dec 2003Google Scholar
  88. 88.
    Sunways, Yield-oriented solar inverters with up to 98% peak efficiency. Product category.
  89. 89.
    M. Victor, F. Greizer, S. Bremicker, U. Hubler, Method of converting a direct current voltage from a source of direct current voltage, more specifically from a photovoltaic couse of direct current voltage, into a alternating current voltage, US Patent Application, Pub. No. US 2005/0286281 A1, 29 Dec 2005Google Scholar
  90. 90.
    A. Nabae, H. Magi, I. Takahashi, A new neutral-point-clamped PWM inverter. IEEE Trans. Ind. Appl. 17(5), 518–523 (1981)Google Scholar
  91. 91.
    P. Knaup, International Patent Application, Pub. No. WO 2007/048420 A1, May 2007Google Scholar
  92. 92.
    M. Calais, V.G. Agelidis, M. Meinhardt, Multilevel converters for single-phase grid connected photovoltaic systems: an overview. Sol. Energy 66(5), 325–335 (1999)CrossRefGoogle Scholar
  93. 93.
    Kaco, Powador XP500-HV TL central inverter.
  94. 94.
    Wikipedia, List of photovoltaic power stations, Sept 2013.
  95. 95.
    SMA news, 114 Sunny Central 900CP XT inverters from SMA, May 2013.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1. Aalborg UniversityAalborgDenmark

Personalised recommendations