Advertisement

Multi-level Conditional VaR Estimation in Dynamic Models

  • Christian Francq
  • Jean-Michel Zakoïan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 251)

Abstract

We consider joint estimation of conditional Value-at-Risk (VaR) at several levels, in the framework of general conditional heteroskedastic models. The volatility is estimated by Quasi-Maximum Likelihood (QML) in a first step, and the residuals are used to estimate the innovations quantiles in a second step. The joint limiting distribution of the volatility parameter and a vector of residual quantiles is derived. We deduce confidence intervals for general Distortion Risk Measures (DRM) which can be approximated by a finite number of VaR’s. We also propose an alternative approach based on non Gaussian QML which, although numerically more cumbersome, has interest when the innovations distribution is fat tailed. An empirical study based on stock indices illustrates the theoretical findings.

Keywords

Risk Measure Asymptotic Distribution Quantile Regression GARCH Model Distortion Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Mathematical Finance 9, 203–228 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307–327 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chan, N.H., Deng, S.J., Peng, L., Xia, Z.: Interval estimation of value-at-risk based on GARCH models with heavy-tailed innovations. Journal of Econometrics 137, 556–576 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cramer, H.: Mathematical Methods of Statistics. Princeton Mathematical Series, vol. 9. Princeton University Press, Princeton (1946)zbMATHGoogle Scholar
  5. 5.
    Davis, R.A., Knight, K., Liu, J.: M-estimation for autoregressions with infinite variance. Stochastic Processes and their Applications 40, 145–180 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ding, Z., Granger, C., Engle, R.F.: A long memory property of stock market returns and a new model. Journal of Empirical Finance 1, 83–106 (1993)CrossRefGoogle Scholar
  7. 7.
    Dominicy, Y., Hörmann, S., Ogata, H., Veredas, D.: Marginal Quantiles for StationaryProcesses. Statistics and Probability Letters 83, 28–36 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Engle, R.F.: Autoregressive conditional heteroskedasticity with estimates of the variance of the United Kingdom inflation. Econometrica 50, 987–1007 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Engle, R.F., Manganelli, S.: CAViaR: Conditional Value at risk by Quantile Regression. Journal of Business and Economic Statistics 22, 367–381 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fan, J., Qi, L., Xiu, D.: Quasi Maximum Likelihood Estimation of GARCH Models with Heavy-Tailed Likelihoods. Discussion Paper, http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1540363
  11. 11.
    Francq, C., Lepage, G., Zakoïan, J.-M.: Two-stage non Gaussian QML estimation of GARCH Models and testing the efficiency of the Gaussian QMLE. Journal of Econometrics 165, 246–257 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Francq, C., Zakoïan, J.-M.: GARCH Models: Structure, Statistical Inference and Financial Applications. John Wiley (2010)Google Scholar
  13. 13.
    Francq, C., Zakoïan, J.-M.: Risk-parameter estimation in volatility models. MPRA Preprint No. 41713 (2012)Google Scholar
  14. 14.
    Francq, C., Zakoïan, J.M.: Optimal predictions of powers of conditionally heteroskedastic processes. Journal of the Royal Statistical Society - Series B 75, 345–367 (2013)CrossRefGoogle Scholar
  15. 15.
    Geweke, J.: Modeling the persistence of conditional variances: a comment. Econometric Review 5, 57–61 (1986)CrossRefGoogle Scholar
  16. 16.
    Glosten, L.R., Jaganathan, R., Runkle, D.: On the relation between the expected values and the volatility of the nominal excess return on stocks. Journal of Finance 48, 1779–1801 (1993)CrossRefGoogle Scholar
  17. 17.
    Gouriéroux, C., Jasiak, J.: Dynamic Quantile Models. Journal of Econometrics 147, 198–205 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Knight, K.: Limiting distributions for L 1 regression estimators under general conditions. The Annals of Statistics 26, 755–770 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  20. 20.
    Koenker, R., Xiao, Z.: Quantile autoregression. Journal of the American Statistical Association 101, 980–990 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kuester, K., Mittnik, S., Paolella, M.S.: Value-at-Risk predictions: A comparison of alternative strategies. Journal of Financial Econometrics 4, 53–89 (2006)CrossRefGoogle Scholar
  22. 22.
    McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management. Princeton University Press (2005)Google Scholar
  23. 23.
    Milhøj, A.: A multiplicative parameterization of ARCH Models. Working Paper, Department of Statistics, University of Copenhagen (1987)Google Scholar
  24. 24.
    Nelson, D.B.: Conditional Heteroskedasticity in Asset Returns: a New Approach. Econometrica 59, 347–370 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Pantula, S.G.: Modeling the persistence of conditional variances: a comment. Econometric Review 5, 71–74 (1986)CrossRefGoogle Scholar
  26. 26.
    Pollard, D.: Asymptotics for Least Absolute Deviation Regression Estimators. Econometric Theory 7, 186–199 (1991)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sentana, E.: Quadratic ARCH Models. Review of Economic Studies 62, 639–661 (1995)CrossRefzbMATHGoogle Scholar
  28. 28.
    Spierdijk, L.: Confidence intervals for ARMA-GARCH Value-at-Risk. Working paper, University of Groningen (2013)Google Scholar
  29. 29.
    Wang, S.: A class of distortion operators for pricing financial and insurance risks. Journal of Risk and Insurance 67, 15–36 (2000)CrossRefGoogle Scholar
  30. 30.
    Wirch, J.L., Hardy, M.R.: A Synthesis of Risk Measures for Capital Adequacy. Insurance: Mathematics and Economics 25, 337–347 (1999)CrossRefzbMATHGoogle Scholar
  31. 31.
    Zakoïan, J.M.: Threshold Heteroskedastic Models. Journal of Economic Dynamics and Control 18, 931–955 (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.CREST and University Lille 3 (EQUIPPE)Villeneuve d’Ascq cedexFrance
  2. 2.EQUIPPE (University Lille 3) and CRESTMalakoff CedexFrance

Personalised recommendations