Skip to main content

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 14))

  • 1788 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kosmatka, S.H. et al.: Special types of concrete. In: PCA (ed.) Design and Control of Concrete Mixtures. Skokie, Illinois (2008)

    Google Scholar 

  2. Bartos, P.J.M.: Workability of special concrete mixes. Mater. Struct. 26, 50–52 (1993)

    Article  Google Scholar 

  3. European Committee for Standardization, CEN/TC 104: EN 206-1 Concrete—Part 1: Specification, performance, production and conformity. Brussels (2005)

    Google Scholar 

  4. Jensen, O.M., Lura, P. Kovler, K.: Materials and methods for internal curing. In: K. Kovler, K., Jensen, O.M. (eds.) Internal Curing of Concrete—State-of-the-Art Report of RILEM Technical Committee 196-ICC, pp. 45–55. RILEM, Bagneux (2007)

    Google Scholar 

  5. American Concrete Institute, ACI Committee 213: ACI 213R-87 Guide for Structural Lightweight Aggregate Concrete. In: ACI Manual of concrete practice, vol. 1. ACI, Farmington Hills (1987)

    Google Scholar 

  6. Kowalsky, M.J., et al.: Shear and flexural behaviour of lightweight concrete bridge columns in seismic regions. ACI Struct. J. 96(1), 136–148 (1999)

    Google Scholar 

  7. Müller, H.S. et al.: Development of self-compacting lightweight aggregate concrete. In: Ozawa, K., Ouchi, M. (eds) Proceedings of The Second International Symposium on SCC, Tokyo (2001)

    Google Scholar 

  8. Kwasny, J., et al.: Influence of the type of coarse lightweight aggregate on properties of semilightweight self-consolidating concrete. J. Mater. Civ. Eng. 24, 1474–1483 (2012). doi:10.1061/(ASCE)MT.1943-5533.0000527

    Article  Google Scholar 

  9. Papanicolaou, C., Kaffetzakis, M.: Pumice aggregate self-compacting concrete (PASCC). In: Khayat, K., Feys, D. (eds.) Proceedings of SCC2010, Montreal (2010)

    Google Scholar 

  10. Kaszynska, M.: Effect of aggregate mix composition on lightweight self-consolidating concrete. In: Khayat, K., Feys, D. (eds.) Proceedings of SCC2010, Montreal (2010)

    Google Scholar 

  11. Costa, H. et al.: Mix design and characterization of self-compacting lightweight aggregate concrete. In: Khayat, K., Feys, D. (eds.) Proceedings of SCC2010, Montreal (2010)

    Google Scholar 

  12. Topçu, I.B., Uygunoglu, T.: Effect of aggregate type on properties of hardened self-consolidating lightweight concrete (SCLC). Const. Build. Mater. 24, 1286–1295 (2010)

    Article  Google Scholar 

  13. Choi, Y.W., et al.: An experimental research on the fluidity and mechanical properties of high-strength lightweight self-compacting concrete. Cem. Concr. Res. 36, 1595–1602 (2006)

    Article  Google Scholar 

  14. Bentur, A., et al.: Prevention of autogenous shrinkage in high strength concrete by internal curing using wet lightweight aggregates. Cem. Concr. Res. 31, 1587–1591 (2001)

    Article  Google Scholar 

  15. Shi, C., Wu, Y.: Mix design and properties of self-consolidating lightweight concrete containing glass powder. ACI Mater. J. 102, 355–363 (2005)

    Google Scholar 

  16. Shi, C., et al.: Use of self-consolidating lightweight concrete for insulated concrete form system. Concr. Int. 28, 40–43 (2006)

    Google Scholar 

  17. Barros, J., et al.: Lightweight panels of steel fiber-reinforced self-compacting concrete. J. Mater. Civ. Eng. 19, 295–304 (2007)

    Article  Google Scholar 

  18. Collepardi, M. et al.: Recent developments of special SCC’s. In: Malhotra, M.H. (ed.) Proceedings of Seventh CANMET/ACI International Conference on Recent Advances in Concrete Technology. ACI, Las Vegas (2004)

    Google Scholar 

  19. Molina, J., Gimeno, J.J.: Hormigon autocompactante (ligero y de densidad normal) para la base de la Copa América del equipo suizo. In: Barragan, B.E. et al. (eds) Proceedings of the 1st Spanish Congress on SCC, Valência (2008)

    Google Scholar 

  20. Foster, B.E.: Attenuation of X-rays and gamma rays in concrete. Mat. Res. Stand. 8, 19–24 (1968)

    Google Scholar 

  21. Revuelta, D., et al.: Measurement of properties and of the resistance to segregation in heavyweight, self-compacting barite concrete. Mat. Const. 59, 31–44 (2009)

    Article  Google Scholar 

  22. Revuelta, D. et al.: Experimental study on a barite heavyweight self-consolidating concrete. In: Gupta, P. et al. (eds) Proceedings of the Tenth ACI International Conference on Recent Advances in Concrete Technology and Sustainability Issues. ACI, Seville (2009)

    Google Scholar 

  23. Nishikawa, K., et al.: Mechanical properties of SCC using recycled materials from demolished concrete structure as aggregate and powder. In: De Schutter, G., Boel, V. (eds.) Proceedings PRO054: Self-Compacting Concrete—SCC 2007. RILEM, Ghent (2007)

    Google Scholar 

  24. Kou, S.C., Poon, C.S.: Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates. Cem. Concr. Comp. 31, 622–627 (2009)

    Article  Google Scholar 

  25. Corinaldesi, V., et al.: SCC: A way to sustainable construction development. In: Yu, Z., et al. (eds.) Proceedings PRO42 SCC 2005—China 1st International Symposium on Design. Performance and Use of SCC. RILEM, Changsha (2005)

    Google Scholar 

  26. Grdic, Z.J., et al.: Properties of self-compacting concrete prepared with coarse recycled concrete aggregate. Const. Build. Mater. 24, 1129–1133 (2010)

    Article  Google Scholar 

  27. Kubens, S., Wallevik, O.: Self-compacting mortar for concrete furniture and design objects. In: Khayat, K., Feys, D. (eds.) Proceedings of SCC2010, Montreal (2010)

    Google Scholar 

  28. Lappa, E.S., et al.: Self-compacting, high strength steel fibre reinforced mortar for pre-cast sheet piles. In: Wallevik, O., Nielsson, I. (eds.) Proceedings PRO033: Self-Compacting Concrete—SCC 2003. RILEM, Reykjavik (2003)

    Google Scholar 

  29. Sahmaran., M. et al: The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars. Cem. Concr. Comp. 28, 432–440 (2006)

    Google Scholar 

  30. ACI Committee 116: ACI 116R-00 cement and concrete terminology. In: ACI Manual of concrete practice, Vol.1. Farmington Hills, American Concrete Institute (2005)

    Google Scholar 

  31. Jin. F, et al.: Construction method of conventional rock-filled concrete 200710100315.3 (2007) (in Chinese)

    Google Scholar 

  32. An, X. et al.: Construction method of dump-type rock-filled concrete. Chinese Patent No 200710121791.3. (2007) (in Chinese)

    Google Scholar 

  33. Jin, F., et al.: Study on rock-filled concrete dam. J. Hydraul. Eng. 36, 1348–1351 (2005). (in Chinese)

    Google Scholar 

  34. Huang, M., et al.: A pilot study on integrated properties of rock-filled concrete. J. Build. Mater. 11, 206–211 (2008). (in Chinese)

    Google Scholar 

  35. Design specification for concrete gravity dams. SL319-2005, China. (in Chinese) (2005)

    Google Scholar 

  36. Song, D., Liu, J.: Application of self-compacted rockfill concrete in baoquan pump-storage power station. Water Power 33, 26–27 (2007). (in Chinese)

    MathSciNet  Google Scholar 

  37. China Gezhouba (Group) Corporation. Experimental Report of RFC.. 2 (2007).(in Chinese)

    Google Scholar 

  38. Vieira, M. et al.: Self-compacting mortar for mass concrete application with PAC technology. In: Khayat, K., Feys, D. (eds.) Proceedings of SCC2010, Montreal (2010)

    Google Scholar 

  39. Vieira, M., Bettencourt, A.: Study for the implementation of preplaced aggregate concrete in dams-Report of 1st phase. LNEC, Lisbon (2009) (Private report in Portuguese)

    Google Scholar 

  40. Vieira, M., et al.: Preplaced-aggregate concrete with self-compacting mortar. on site world premier applications. Proceedings of SCC2013, Paris (2013)

    Google Scholar 

  41. Naaman, A.E., Baccouche, M.R.: Shear response of dowel reinforced SIFCON. ACI Struct. J. 92, 587–596 (1995)

    Google Scholar 

  42. Haynes H Investigation of fibre reinforcement methods for thin shell concrete. Naval Civil Engineering Laboratory, Port Hueneme, CA, N-979, 1-26 (1968)

    Google Scholar 

  43. Reinhardt, H.W., Fritz, C.: Optimization of SIFCON mix. In: Swamy, R.N., Barr, B. (eds.) Proc. Int. Symp. Fibre reinforced concrete—recent developments, Cardiff (1989)

    Google Scholar 

  44. Naaman, A.E., et al.: SIFCON connections for seismic resistant frames. Concr. Int. 9, 34–49 (1987)

    Google Scholar 

  45. Bartos, P.J.M., Marrs, D.L.: Development and testing of self-compacting grout for the production of SIFCON. In: Reinhardt, H.W., Naaman, A.E. (eds) Proc. Int. Work. On High performance fibre reinforced cement composites. RILEM, Mainz (1999)

    Google Scholar 

  46. Sonebi, M., et al.: Factorial design for cement slurries containing limestone powder for self-consolidating SIFCON. ACI Mater. J. 101, 136–145 (2004)

    Google Scholar 

  47. Sonebi, M., et al.: Statistical modelling of cement slurries for self-compacting SIFCON containing silica fume. Mater. Struct. 38, 79–86 (2005)

    Article  Google Scholar 

  48. Svermova, L. et al. Design and testing of selfcompacting sifcon produced with low strength slurry. In: Proceedings of the 7th International Symposium on Brittle Matrix Composites, Warsaw (2007)

    Google Scholar 

  49. Hela, R., Hubertova, M.: Research of effect of fibre reinforcement at characteristics of lightweight self-compacting concrete. In: De Schutter, G., Boel, V. (eds.) Proceedings of the SCC2007, 5th International RILEM Symposium on Self-Compacting Concrete, Gent (2007)

    Google Scholar 

  50. Mazaheripour, H., et al.: The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete. Const. Build. Mater. 25, 351–358 (2011)

    Article  Google Scholar 

  51. Olsen, E.C., Billington, S.L.: Cyclic response of precast high-performance fiber rein-forced concrete infill panels. ACI Struct. J. 108(1), 51–60 (2011)

    Google Scholar 

  52. Camacho, E., Serna, P.: Design and experimental verification of self-compacting ultra-high performance hybrid fiber-reinforced concrete ties. In: Khayat, K., Feys, D. (eds.) Proceedings of SCC2010, Montreal (2010)

    Google Scholar 

  53. Ferrara, L., e al.: High mechanical performance of fiber reinforced cementitious composites: the role of “casting-flow” induced fiber orientation. Mater. Struct. 44, 109–128 (2011)

    Google Scholar 

  54. Pansuk, W., et al.: Tensile behaviors and fiber orientation of UHPC. In: Fehling et al. (eds.) Ultra High Performance Concrete, Kassel, Germany, March 2008. Proceedings 2nd International Symposium on UHPC, pp. 161–168. Kassel University Press (1996)

    Google Scholar 

  55. Ferrara, L., et al.: A magnetic method for non-destructive monitoring of fiber dispersion and orientation in Steel Fiber Reinforced Cementitious Composites—part 1: method calibration. Mater. Struct. 45, 575–589 (2012)

    Article  Google Scholar 

  56. Ferrara, L., et al.: A magnetic method for non-destructive monitoring of fiber dispersion and orientation in steel fiber reinforced cementitious composites—part 2: correlation to tensile fracture toughness. Mater. Struct. 45, 591–598 (2012)

    Article  Google Scholar 

  57. Faifer, M., et al.: Non-destructive testing of steel fiber reinforced concrete using a magnetic approach. IEEE Trans. Instrum. Meas. 60(5), 1709–1717 (2011)

    Article  Google Scholar 

  58. Ferrara, L. et al.: Self consolidating high performance SFRC: an example of structural application in Italy. In: Aldea, C.M., Ferrara, L. (eds.) Fiber reinforced Self Consolidating concrete: research and application”, pp. 109–128. ACI-SP 274, Farmington Hills (2010)

    Google Scholar 

  59. di Prisco, M., et al.: HPFRCC thin plates for precast roofing. In: Fehling et al. (eds.) Ultra High Performance Concrete, Kassel, Germany, March 2008. Proceedings 2nd International Symposium on UHPC. Kassel University Press, (1996)

    Google Scholar 

  60. El-Hacha, R., et al.: Effect of casting method and shear span-to-depth ratio on the behaviour of Ultra-High Performance Concrete cross arms for high voltage transmission lines. Eng. Struct. 32, 2210–2220 (2010)

    Article  Google Scholar 

  61. Suresh Babu, T., et al.: A study on the flexural behaviour of glass fiber reinforced self-compacting concrete. In: Gettu, R. (ed.) Fiber Reinforced Concrete: Design and Applications, Proceedings of the 7th International RILEM Symposium BEFIB 2008, Chennai, India, September 2008. RILEM PRO 60, pp. 793–802. RILEM Pubs (2008)

    Google Scholar 

  62. Sravana, P., et al.: Flexural behaviour of glass fibre reinforced self-compacting concrete slabs. 35th Conference on “our world in concrete & structures”, Singapore (2010)

    Google Scholar 

  63. Khayat, K.H., et al. : High quality tremie concretes for underwater repairs. In: Whitting, D. (ed.) Symposium on Performance of Concrete, pp. 125–138. ACI SP-122, Farmington Hills (1989)

    Google Scholar 

  64. Khayat, K.H., Hester, H.T.: Evaluation of concrete mixtures for underwater pile repairs. ASTM Cem. Concr. Aggreg. J. 13(1), 32–41 (1991)

    Article  Google Scholar 

  65. Khayat, K.H.: In-situ properties of concrete piles repaired under water. Concr. Int. 14(3), 42–49 (1992)

    Google Scholar 

  66. Khayat, K.H., et al.: Self-leveling and stiff consolidated concretes for casting high-performance flat slabs in water. Concr. Int. 15(8), 36–43 (1993)

    Google Scholar 

  67. Sonebi, M., Khayat, K.H.: Performance of underwater concrete cast in still and flowing water. Concr. 37(3), 29–31 (2003)

    Google Scholar 

  68. Sonebi, M., Khayat, K.H.: Effect of mixture composition on relative strength of highly flowable underwater concrete. ACI Mater. J. 98(3), 233–239 (2001)

    Google Scholar 

  69. Sonebi, M., Khayat, K.H.: Effect of water velocity on performance of selfconsolidating underwater-cast concrete. ACI Mater. J. 96(5), 519–528 (1999)

    Google Scholar 

  70. Sonebi, M., Khayat, K.H.: Effect of free-fall height in water on performance of flowable concrete. ACI Mater. J. 98(1), 72–78 (2001)

    Google Scholar 

  71. Smeplass, S., Pedersen, B.: SCC-Economic benefits? In: Nordic SCCNet, Oslo (2006)

    Google Scholar 

  72. Uebachs, S.: Self-consolidating concrete for floor slab and screed applications. In: The Third North American Conference on the Design and Use of Self- Consolidating Concrete, Chicago (2008)

    Google Scholar 

  73. McLeish, A.: Flowable concrete for structural repairs. In: Bartos, P.J.M., Marrs, D.L. and Cleland, D.J. (eds.) Proc. Int. RILEM Conf. On Production methods and workability of concrete (1996)

    Google Scholar 

  74. Courard, L., Bissonnette, B.: Compatibility performance as a fundamental requirement for the repair of concrete structures with self-compacting repair mortars. In: De Schutter, G., Boel, V. (eds.) Proceedings PRO054: Self-Compacting Concrete—SCC 2007. RILEM, Ghent (2007)

    Google Scholar 

  75. Silfwerbrand, J.L.: Use of self-compacting concrete for bonded overlays. In: De Schutter, G., Boel, V. (eds.) Proceedings PRO054: Self-Compacting Concrete—SCC 2007. RILEM, Ghent (2007)

    Google Scholar 

  76. Vieira M, Bettencourt A (2005) Repair applications of self-compacting concrete. In: Proceedings of SCC2005. RILEM, Chicago

    Google Scholar 

  77. Khayat, K.H. et al.: Rehabilitation strategies and material performance of SCC used for the repair of Jarry/Querbes underpass in Montreal. In: Alexander et al. (eds) Concrete Repair, Rehabilitation and Retrofitting. London (2006)

    Google Scholar 

  78. Miller, M. et al.: SCC Proves Successful in Repair and Strengthening Projects. http://www.concreteconstruction.net/. (2009). Accessed 26 June 2012

  79. Hwang, S.D. et al.: Specifications and quality control testing of self-consolidating mortar designated for annular space grouting. In: Khayat, K., Feys, D. (eds.) Proceedings of SCC2010, Montreal (2010)

    Google Scholar 

  80. Vitsios, I., et al.: Self Compacting Mortars for Repair Applications According to EN 1504–3. Democritus University of Thrace, Diploma Thesis (2012). (in Greek)

    Google Scholar 

  81. Pistolesi C et al.: Low shrinking self-compacting concretes for concrete repair. In: Alexander et al. (eds) Concrete Repair, Rehabilitation and Retrofitting II. London (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Vieira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 RILEM

About this chapter

Cite this chapter

Vieira, M., Ferrara, L., Sonebi, M., Shi, C. (2014). Specialty SCC. In: Khayat, K., De Schutter, G. (eds) Mechanical Properties of Self-Compacting Concrete. RILEM State-of-the-Art Reports, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-03245-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03245-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03244-3

  • Online ISBN: 978-3-319-03245-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics