Exemplary Applications of the Complete Gradient Clustering Algorithm in Bioinformatics, Management and Engineering

  • Piotr Kulczycki
  • Malgorzata Charytanowicz
  • Piotr A. Kowalski
  • Szymon Łukasik
Part of the Studies in Computational Intelligence book series (SCI, volume 530)


This publication deals with the applicational aspects and possibilities of the Complete Gradient Clustering Algorithm—the classic procedure of Fukunaga and Hostetler, prepared to a ready-to-use state, by providing a full set of procedures for defining all functions and the values of parameters. Moreover, it describes how a possible change in those values influences the number of clusters and the proportion between their numbers in dense and sparse areas of data elements. The possible uses of these properties were illustrated in practical tasks from bioinformatics (the categorization of grains for seed production), management (the design of a marketing support strategy for a mobile phone operator) and engineering (the synthesis of a fuzzy controller).


Exploratory data analysis Clustering Nonparametric methods  Kernel estimators Seed production  Mobile phone operator Fuzzy controller 


  1. 1.
    Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P.A., Łukasik, S., Zak, S.: gradient clustering algorithm for features analysis of X-ray images. In: Pietka, E., Kawa, J. (eds.) Information Technologies in Biomedicine, vol. 2, pp. 15–24. Springer, Berlin (2010)Google Scholar
  2. 2.
    Everitt, B.S., Landau, S., Leese, M.: Cluster Analysis. Arnold, London (2001)MATHGoogle Scholar
  3. 3.
    Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer, Dordrecht (1994)CrossRefMATHGoogle Scholar
  4. 4.
    Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 21, 32–40 (1975)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Kacprzyk, J.: Multistage Fuzzy Control: A Model-Based Approach to Control and Decision-Making. Wiley, Chichester (1997)MATHGoogle Scholar
  6. 6.
    Kincaid, D., Cheney, W.: Numerical Analysis. Brooks/Cole, Pacific Grove (2002)Google Scholar
  7. 7.
    Kowalski, P.A., Łukasik, S., Charytanowicz, M., Kulczycki, P.: Data-driven fuzzy modeling and control with kernel density based clustering technique. Pol. J. Environ. Stud. 17, 83–87 (2008)Google Scholar
  8. 8.
    Kulczycki, P.: Estymatory jadrowe w analizie systemowej. WNT, Warsaw (2005)Google Scholar
  9. 9.
    Kulczycki, P.: Estymatory jadrowe w badaniach systemowych. In: Kulczycki, P., Hryniewicz, O., Kacprzyk, J. (eds.) Techniki informacyjne w badaniach systemowych, pp. 79–105. WNT, Warsaw (2007)Google Scholar
  10. 10.
    Kulczycki, P.: Kernel estimators in industrial applications. In: Prasad, B. (ed.) Soft Computing Applications in Industry, pp. 69–91. Springer, Berlin (2008)CrossRefGoogle Scholar
  11. 11.
    Kulczycki, P., Charytanowicz, M.: A complete gradient clustering algorithm formed with kernel estimators. Int. J. Appl. Math. Comput. Sci. 20, 123–134 (2010)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Kulczycki, P., Charytanowicz, M.: A complete gradient clustering algorithm. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds.) Artificial Intelligence and Computational Intelligence, Lecture Notes in Artificial Intelligence, vol. III, pp. 497–504. Springer, Berlin (2011)Google Scholar
  13. 13.
    Kulczycki, P., Charytanowicz, M., Kowalski, P.A., Łukasik, S.: The complete gradient clustering algorithm: Properties in practical applications. J. Appl. Stat. 39, 1211–1224 (2012)Google Scholar
  14. 14.
    Kulczycki, P., Daniel, K.: Metoda wspomagania strategii marketingowej operatora telefonii komorkowej, Przeglad Statystyczny, vol. 56, pp. 116–134 (2009)Google Scholar
  15. 15.
    Kulczycki, P., Kowalski, P.A.: Bayes classification of imprecise information of interval type. Control Cybern. 40, 101–123 (2011)MathSciNetGoogle Scholar
  16. 16.
    Kulczycki, P., Łukasik, S.: An algorithm for reducing dimension and size of sample for data exploration procedures (2014) (in press)Google Scholar
  17. 17.
    Kulczycki, P., Prochot, C.: Wykrywanie elementow odosobnionych za pomoca metod estymacji nieparametrycznej. In: Kulikowski, R., Kacprzyk, J., Slowinski, R. (eds.) Badania operacyjne i systemowe: podejmowanie decyzji - podstawy teoretyczne i zastosowania, pp. 313–328. EXIT, Warsaw (2004)Google Scholar
  18. 18.
    Łukasik, S., Kowalski, P.A., Charytanowicz, M., Kulczycki, P.: Fuzzy models synthesis with kernel-density based clustering algorithm. In: Ma, J., Yin, Y., Yu, J., Zhou, S. (eds.) Fifth International Conference on Fuzzy Systems and Knowledge Discovery, vol. 3, pp. 449–453 Jinan (China), 18–20 Oct 2008Google Scholar
  19. 19.
    Mudi, R., Pal, N.R.: A robust self-tuning scheme for PI and PD type fuzzy controllers. IEEE Trans. Fuzzy Syst. 7, 2–16 (1999)CrossRefGoogle Scholar
  20. 20.
    Pal, S.K., Mitra, P.: Pattern Recognition Algorithms for Data Mining. Chapman and Hall, London (2004)CrossRefMATHGoogle Scholar
  21. 21.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)CrossRefMATHGoogle Scholar
  22. 22.
    Tan, K.C., Sathikannan, R., Tan, W.W., Loh, A.P.: Evolutionary design and implementation of a hard disk drive servo control system. Soft Comput. 11, 131–139 (2007)Google Scholar
  23. 23.
    Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman and Hall, London (1994)Google Scholar
  24. 24.
    Yager, R.R., Filev, D.P.: Foundations of Fuzzy Modeling and Control. Wiley, New York (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Piotr Kulczycki
    • 1
    • 2
  • Malgorzata Charytanowicz
    • 1
    • 3
  • Piotr A. Kowalski
    • 1
    • 2
  • Szymon Łukasik
    • 1
    • 2
  1. 1.Centre of Information Technology for Data Analysis Methods, Systems Research InstitutePolish Academy of SciencesWarsawPoland
  2. 2.Department of Automatic Control and Information TechnologyCracow University of TechnologyCracowPoland
  3. 3.Institute of Mathematics and Computer ScienceJohn Paul II Catholic University of LublinLublinPoland

Personalised recommendations