A Novel View of Bipolarity in Linguistic Data Summaries

  • Janusz Kacprzyk
  • Sławomir Zadrożny
  • Mateusz Dziedzic
Part of the Studies in Computational Intelligence book series (SCI, volume 530)


The problem of data summarization of a set of (numeric) data, notably a (relational) database is dealt with. We are concerned with how to devise a short, (quasi) natural language summary, in the form of a sentence, which would best grasp the very content of the set of data. For instance, for a personnel database with records corresponding to particular employees who are described by attributes like age, sex, salary, etc., such a linguistic summary with respect to age may be “most employees are middle aged”. We use as a point of departure a fuzzy logic based approach to linguistic summarization originated by Yager, and then developed by Kacprzyk and Zadrożny who have also indicated—first—an intrinsic connection between linguistic summarization and fuzzy querying, and—second—a crucial role of protoforms in Zadeh’s sense. The second point of departure is the concept of a bipolar query in the sense that the querying criteria may be mandatory and optional, i.e. those which must be satisfied and those which should be satisfied if possible, as initiated by Zadrożny, and then developed by Zadrożny, Kacprzyk and De Tré. In this paper we present the concept of a bipolar linguistic summary that combines the very concepts of a linguistic summary with that of bipolarity in the above sense, and also an analogous relation between the linguistic summaries and bipolar queries.


Bipolar query Database query Fuzzy logic Linguistic data summary  Linguistic quantifier  



Mateusz Dziedzic contribution is supported by the Foundation for Polish Science under International PhD Projects in Intelligent Computing. Project financed from The European Union within the Innovative Economy Operational Programme (2007–2013) and European Regional Development Fund.


  1. 1.
    Yager, R.R.: A new approach to the summarization of data. Inf. Sci. 28, 69–86 (1982)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Yager, R.R.: On linguistic summaries of data. In: Frawley, W., Piatetsky-Shapiro. G., (eds.) Knowledge Discovery in Databases, pp. 347–363. AAAI/MIT Press (1991)Google Scholar
  3. 3.
    Kacprzyk, J., Yager, R.R.: Linguistic summaries of data using fuzzy logic. Int. J. Gen. Syst. 30, 33–154 (2001)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Kacprzyk, J., Yager, R.R., Zadrożny, S.: A fuzzy logic based approach to linguistic summaries of databases. Int. J. Appl. Math. Comput. Sci. 10, 813–834 (2000)MATHGoogle Scholar
  5. 5.
    Kacprzyk, J., Zadrożny, S.: Computing with words: towards a new generation of linguistic querying and summarization of databases. In: Sinčak, P., Vaščak, J. (eds.) Quo Vadis Computational Intelligence?, pp. 144–175. Springer, Heidelberg and New York (2000)Google Scholar
  6. 6.
    Kacprzyk, J., Zadrożny, S.: Linguistic database summaries and their protoforms: towards natural language based knowledge discovery tools. Inf. Sci. 173(4), 281–304 (2005)CrossRefGoogle Scholar
  7. 7.
    Kacprzyk, J., Zadrożny, S.: Computing with words is an implementable paradigm: fuzzy queries, linguistic data summaries, and natural-language generation. IEEE Trans. Fuzzy Syst. 18(3), 461–472 (2010)CrossRefGoogle Scholar
  8. 8.
    Kacprzyk, J., Zadrożny, S.: Data mining via linguistic summaries of data: an interactive approach. In: Yamakawa, T., Matsumoto, G. (eds.) Methodologies for the Conception, Design and Application of Soft Computing, pp. 668–671. Proceedings of IIZUKA’98, Iizuka, Japan (1998)Google Scholar
  9. 9.
    Kacprzyk, J., Zadrożny, S.: Data mining via linguistic summaries of databases: an interactive approach. In: Ding, L. (ed.) A New Paradigm of Knowledge Engineering by Soft Computing, pp. 325–345. World Scientific, Singapore (2001)Google Scholar
  10. 10.
    Dubois, D., Prade, H.: Bipolarity in flexible querying. In: Andreasen, T., Motro, A., Christiansen, H., Larsen, H. L. (eds.) FQAS 2002, LNAI, vol. 2522, pp. 174–182. Springer, Heidelberg (2002)Google Scholar
  11. 11.
    Kacprzyk, J., Zi\(\dot{\rm {o}}\)łkowski, A.: Database queries with fuzzy linguistic quantifiers. IEEE Trans. Syst. Man Cybern. 16(3), 474–479 (1986)Google Scholar
  12. 12.
    Kacprzyk, J., Zadrożny, S., Ziółkowski, A.: FQUERY III+: a “human consistent” database querying system based on fuzzy logic with linguistic quantifiers. Inf. Syst. 14(6), 443–453 (1989)CrossRefGoogle Scholar
  13. 13.
    Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. Appl. 9, 149–184 (1983)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Kacprzyk, J., Zadrożny, S.: Computing with words in intelligent database querying: standalone and internet-based applications. Inf. Sci. 134(1–4), 71–109 (2001)CrossRefMATHGoogle Scholar
  15. 15.
    Kacprzyk, J., Yager, R.R., Zadrożny, S.: Fuzzy linguistic summaries of databases for an efficient business data analysis and decision support. In: Abramowicz, W., Żurada, J. (eds.) Knowledge Discovery for Business Information Systems, pp. 129–152. Kluwer, Boston (2001)Google Scholar
  16. 16.
    Zadeh, L.A.: From search engines to question answering systemsthe problems of world knowledge relevance deduction and precisiation. In: Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web, p. 163210. Elsevier (2006)Google Scholar
  17. 17.
    Zadeh, L.A.: A prototype-centered approach to adding deduction capabilities to search engines - the concept of a protoform. In: Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS 2002), pp. 523–525. New Orleans, USA (2002)Google Scholar
  18. 18.
    Dubois, D., Prade, H.: Handling bipolar queries in fuzzy information processing. In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases, pp. 97–114. Information Science Reference, New York (2008)Google Scholar
  19. 19.
    Matthé, T., De Tré, G., Zadrożny, S., Kacprzyk, J., Bronselaer, A.: Bipolar database querying using bipolar satisfaction degrees. Int. J. Intell. Syst. 26(10), 890–910 (2011)CrossRefGoogle Scholar
  20. 20.
    Lacroix, M., Lavency, P.: Preferences: Putting more knowledge into queries. In: Proceedings of the 13 International Conference on Very Large Databases, pp. 217–225. Brighton, UK (1987)Google Scholar
  21. 21.
    Yager, R.R.: Higher structures in multi-criteria decision making. Int. J. Man Mach. Stud. 36, 553–570 (1992)CrossRefGoogle Scholar
  22. 22.
    Yager, R.R.: Fuzzy logic in the formulation of decision functions from linguistic specifications. Kybernetes 25(4), 119–130 (1996)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Bordogna, G., Pasi, G.: Linguistic aggregation operators of selection criteria in fuzzy information retrieval. Int. J. Intell. Syst. 10(2), 233–248 (1995)CrossRefGoogle Scholar
  24. 24.
    Zadrożny, S.: Bipolar queries revisited. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) Modelling Decisions for Artificial Intelligence (MDAI 2005), vol. 3558, pp. 387–398. LNAI, Springer, Heidelberg (2005)Google Scholar
  25. 25.
    Zadrożny, S., Kacprzyk, J.: Bipolar queries: an aggregation operator focused perspective. Fuzzy Sets Syst. 196, 69–81 (2012)Google Scholar
  26. 26.
    Dziedzic, M., Zadrożny, S., Kacprzyk, J.: Towards bipolar linguistic summaries: a novel fuzzy bipolar querying based approach. In: Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference on, p. 1–8, june 2012Google Scholar
  27. 27.
    Kacprzyk, J., Wilbik, A., Zadrożny, S.: Linguistic summarization of time series using a fuzzy quantifier driven aggregation. Fuzzy Sets Syst. 159(12), 1485–1499 (2008)CrossRefMATHGoogle Scholar
  28. 28.
    Kacprzyk, J., Wilbik, A., Zadrożny, S.: An approach to the linguistic summarization of time series using a fuzzy quantifier driven aggregation. Int. J. Intell. Syst. 25(5), 411–439 (2010)MATHGoogle Scholar
  29. 29.
    Niewiadomski, A.: A type-2 fuzzy approach to linguistic summarization of data. IEEE Trans. Fuzzy Syst. 16(1), 198–212 (2008)CrossRefMathSciNetGoogle Scholar
  30. 30.
    De Tré, G., Zadrożny, S., Bronselaer, A.: Handling bipolarity in elementary queries to possibilistic databases. IEEE Trans. Fuzzy Sets 18(3), 599–612 (2010)CrossRefGoogle Scholar
  31. 31.
    Zadrożny, S., De Tré, G., Kacprzyk, J.: Remarks on various aspects of bipolarity in database querying. In: DEXA Workshops, IEEE Computer Society (2010)Google Scholar
  32. 32.
    Kacprzyk, J., Zadrożny, S.: Bipolar queries, and intention and preference modeling: synergy and cross-fertilization. In: Proceedings of the World Conference on Soft Computing, San Francisco, CA, USA, 23/05/2011-26/05/2011 (2010)Google Scholar
  33. 33.
    Grabisch, M., Greco, S., Pirlot, M.: Bipolar and bivariate models in multicriteria decision analysis: descriptive and constructive approaches. Int. J. Intell. Syst. 23, 930–969 (2008)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Janusz Kacprzyk
    • 1
    • 3
  • Sławomir Zadrożny
    • 1
    • 2
  • Mateusz Dziedzic
    • 1
    • 4
  1. 1.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  2. 2.Warsaw School of Information TechnologyWarszawaPoland
  3. 3.PIAP–Industrial Research Institute of Automation and MeasurementsWarsawPoland
  4. 4.Department of Electrical and Computer EngineeringCracow University of TechnologyCracowPoland

Personalised recommendations