Local Center of Gravity Based Gathering Algorithm for Fat Robots

  • Kálmán Bolla
  • Zsolt Csaba Johanyák
  • Tamás Kovács
  • Gábor Fazekas
Chapter

Abstract

Swarm intelligence has become an intensively studied research area in the last few years. Gathering of mobile robots is one of its basic topics that aims the assembly of the scattered robots on the smallest possible area. In this chapter, we present a new and effective algorithm for this task supposing an obstacle-free plan, limited visibility, and synchronous, fat (disc-like) robots without global navigation, communication, or memory. The key idea of the algorithm is that in case of each robot after detecting the visible neighbouring robots it sets the target of the next step based on the encountered visible robots’ center of gravity. The new algorithm was successfully tested using computer simulations for several parameter and swarm size values and it achieved similar or better performance as the studied previously published algorithms in all of the cases.

Keywords

Mobile robot swarm Gathering problem Fat robots 

References

  1. 1.
    Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theoret. Comput. Sci. 384, 222–231 (2007)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In: Kralovic, R., Sykora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 79–88. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for synchronous mobile robots with limited visibility. In: Proceedings of the 1995 IEEE International Symposium on Intelligent Control, pp. 453–460. IEEE Press, New York (1995)Google Scholar
  5. 5.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theoret. Comput. Sci. 337, 147–168 (2005)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to gather oblivious mobile robots with limited visibility. In: Datta, A. K., Gradinariu, M. (eds.) SSSS 2006. LNCS, vol. 4208, pp. 484–500. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Degener, B., Kempkes, B., auf der Heide, F.M.: A local O(\(n^{2}\)) gathering algorithm. In: SPAA ’10 Proceedings of the 22nd ACM symposium on Parallelism in algorithms and architectures, pp. 224–232. ACM, New York (2010)Google Scholar
  8. 8.
    Czyzowicz, G.J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theoret. Comput. Sci. 410, 481–499 (2009)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Cord-Landwehr, A., Degener, B., Fischer, M., Hüllmann M., Kempkes, B., Klaas, A., Kling, P., Kurras S., Märtens M., auf der Heide, F. M., Raupach, C., Swierkot, K., Warner D., Weddemann, C., Wonisch, D.: Collisionless gathering of robots with an extent. In: Cerná, I., Gyimóthy, T., Hromkovic, J., Jefferey, K., Královic, R., Vukolic, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 178–189. Springer, Heidelberg (2011)Google Scholar
  10. 10.
    Chaudhuri, S.G., Mukhopadhyaya, K.: Gathering asynchronous transparent fat robots. In: Janowski, T., Mohanty, H. (eds.) ICDCIT 2010. LNCS, vol. 5966, pp. 170–175. Springer, Heidelberg (2010)Google Scholar
  11. 11.
    Bolla, K., Kovacs T., Fazekas G.: Gathering of fat robots with limited visibility and without global navigation. Swarm and Evolutionary Computation, LNCS, vol. 7269, pp. 30–38. Springer, Heidelberg (2012)Google Scholar
  12. 12.
    Gál, L., Botzheim, J., Kóczy, L.T.: Advanced bacterial memetic algorithms. In: First Győor Symposium on Computational Intelligence, pp. 57–60. Győr, Hungary (2008)Google Scholar
  13. 13.
    Pozna, C., Troester, F., Precup, R.-E., Tar, J.K., Preitl, S.: On the design of an obstacle avoiding trajectory: method and simulation. Math. Comput. Simul. 79(7), 2211–2226 (2009)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Klančar, G., Matko, D., Blažič, S.: A control strategy for platoons of Differential-drive wheeled mobile robot. Robot. Auton. Syst. 59(2), 57–64 (2011)CrossRefGoogle Scholar
  15. 15.
    Vaščák, J.: Approaches in adaptation of fuzzy cognitive maps for navigation purposes. In: SAMI-8th International Symposium on Applied Machine Intelligence and Informatics, pp. 31–36. Herany, Slovakia (2010)Google Scholar
  16. 16.
    Vincze, D., Kovács, S.: Incremental rule base creation with fuzzy rule interpolation-based Q-learning. Stud. Comput. Intell. Comput. Intell. Eng. 313, 191–203 (2010)CrossRefGoogle Scholar
  17. 17.
    Perfilieva, I., Wrublova, M., Hodakova, P.: Fuzzy interpolation according to fuzzy and classical conditions. Acta Polytech. Hung. 7(4), 39–55 (2010)Google Scholar
  18. 18.
    Cohen, R., Peleg, D.: Local spread algorithms for autonomous robot systems. Theoret. Comput. Sci. 399, 71–82 (2008)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Valdastri, P., Corradi, P., Menciassi, A., Schmickl, T., Crailsheim, K., Seyfried, J., Dario, P.: Micromanipulation, communication and swarm intelligence issues in a swarm microrobotic platform. Robot. Auton. Syst. 54, 789–804 (2006)CrossRefGoogle Scholar
  20. 20.
    Nouyan, S., Alexandre Campo, A., Dorigo, M.: Gathering path formation in a robot swarm self-organized strategies to find your way home. Swarm Intell. 2(1), 1–23 (2008)CrossRefGoogle Scholar
  21. 21.
    Kovács, L.: Rule approximation in metric spaces. In: Proceedings of 8th IEEE International Symposium on Applied Machine Intelligence and Informatics SAMI, pp. 49–52. Herl’any, Slovakia (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kálmán Bolla
    • 1
  • Zsolt Csaba Johanyák
    • 1
  • Tamás Kovács
    • 1
  • Gábor Fazekas
    • 1
  1. 1.Kecskemét CollegeDepartment of Information TechnologiesKecskemétHungary

Personalised recommendations