Skip to main content

Hydrothermal Activity and Metalliferous Deposits

  • Chapter
  • First Online:
  • 1632 Accesses

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

Abstract

The World’s major marine geological structures have been affected by physical and chemical changes during and after their creation at spreading axes and in intraplate regions where islands and seamounts are formed. These changes are largely related to the penetration of the hydrosphere into the rigid lithosphere. A chemical reaction between the hydrosphere (seawater) and the lithosphere (rocks) in the presence of heat gives rise to hydrothermal fluid. The circulation of this fluid is the main cause of the lithosphere’s transformation due to the alteration (hydration) of metallic components from rocks and their subsequent precipitation on the sea floor in the form of ore deposits. A theory about the existence of hydrothermal discharge and metal deposits on the ocean floor was based on geophysical constraints related to the Earth’s heat budget. The deficit of heat discharge on spreading ridges was thought to be the result of a discharge of hydrothermal fluid on the sea floor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Charlou J, Donval J (1993) Hydrothermal methane venting between 12°N and 26°N along the Mid-Atlantic Ridge. J Geophys Res 98(B6):9825–9642

    Google Scholar 

  • Corliss JB, Lyle M, Dymond J (1978) The chemistry of hydrothermal mounds near the Galapagos Rift. Earth Planet Sci Lett 40:12–24

    Article  Google Scholar 

  • Corliss JB, Dymond J, Gordon LE, Edmond JM, Von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge AE, Crane K, van Andel Tj H (1979) Submarine thermal springs on the Galapagos Rift. Science 203:1073–1083

    Article  Google Scholar 

  • Binns RA, Scott SD (1993) Actively-forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus Basin. Papua New Guinea: Econ Geol 88:2226–2236

    Google Scholar 

  • Bischoff JL (1980) Geothermal system at 21°N, East Pacific Rise: physical limits on geothermal fluid and role of adiabatic expansion. Science 207(4438):1465–1469

    Article  Google Scholar 

  • Degens E, Ross DA (eds) (1969) Hot brines and heavy metal deposits in the Red Sea; a geochemical and geophysical account. Springer, New York, 600 p

    Google Scholar 

  • Dymond J, Cobler R, Muratli CM, Chou C, Conrad R (1980) In initial reports, Deep Sea drillin project. In: Rosendahl BR, Hekinian R (eds) vol 54. US Govt. Printing Office, Washington, pp 377–386

    Google Scholar 

  • Exon NJ, Bogdanov NA, Francheteau J, Garrett C, Hsü J, Mienett W, Ricken SD, Scott SD, Stein RH, Thiede J, von Stackelberg (1992) Group report: what is the resource potential of deep sea ocean? In: Su KJ, Thiede J (eds) Use and Miss-use of the sea floor. Wiley, p 7–27

    Google Scholar 

  • Francheteau J, Needham D, Juteau T. Rangin C (1980) Naissance d’un Océan, CYAMEX, Publshed by CNEXO (Centre National pour l’Exploitation des Océans) IFREMER 92138, Issy Les Moulineaux France, 85 p

    Google Scholar 

  • Hajash A (1975) Hydrothermal processes along mid-ocean ridges: an experimental investigation. Unpublished Ph D dissertation Texas A&M University College Station Texas, p 61

    Google Scholar 

  • Haymon RM, Kastner M (1981) Hot spring deposits on the East Pacific Rise at 21°N: preliminary description of mineralogy and genesis. Earth Planet Sci Lett 53:363–381

    Article  Google Scholar 

  • Haymon RM, Kastner M (1986) Caminite: a new magnesium-hydroxide-sulfate-hydrated mineral found in submarine hydrothermal deposit, East Pacific Rise, 21°N. Am Mineral 71:819–825

    Google Scholar 

  • Hekinian R, Fouquet Y (1985) Volcanism and metallogenesis of axial and off-axial structures on the East Pacific Risenear 13°N. Econom Geol 80:221–249

    Article  Google Scholar 

  • Hekinian R, Binard N (2008) Le Feu des Abysses. Editions Quae: Versailles, France, p 175

    Google Scholar 

  • Hoffert M, Perseil A, Hekinian R, Choukroune P, Needham HD, Francheteau J and Le Pichon X (1978) In initial reports, deep sea drilling project. In: Rosendahl BR, Hekinian R (eds), US Govt Printing Office, Washington, vol 54, pp. 339–376

    Google Scholar 

  • Honnorez J (1981) The aging of the oceanic crust at low temperature: In Emiliani C (ed), The Sea. The oceanic lithosphere. Wiley, New York, vol 7, pp 525–587

    Google Scholar 

  • Juniper and Fouquet Y (1988) Filamentous iron-silica deposits from modern and ancient hydrothermal sites. Can Mineral 26:859–870

    Google Scholar 

  • Lonsdale P (1977) Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res 24(9):857–863

    Article  Google Scholar 

  • McMurty GM, De Carlo EH, Kim KH, Kronk LW (1983) Trans Am Geophys Union 64:1018 (Abstr)

    Google Scholar 

  • Parker RL, Oldenburg DW (1973) Thermal model of ocean ridges. Nature 242(1973):137–139

    Google Scholar 

  • Sclater JG, Francheteau J (1970) The implication of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper mantle of the Earth. Royal Astron Soc Geophys J 2:509–542

    Article  Google Scholar 

  • Scott SD (1985) Seafloor polymetallic sulfide deposits: modern and ancient. Mar Min 5:191–212

    Google Scholar 

  • Scott SD (1987) Seafloor polymetallic sulfides: scientific curiosity or mines of the future? In: Teleki PO et al. (ed) Marine minerals resources and assessment strategies, Proc NATO Advence Res Workshop Series C 194 Reidel Boston Mass, pp 277–300

    Google Scholar 

  • Scott SD, Binns RA (1992) An actively-forming, felsic volcanic-hosted polymetallic sulfide deposit in southeast Manus back-arc basin of Papua New Guinea (abstr). EOS Trans Am Geophys Union 73:836

    Google Scholar 

  • Spiess FN, Macdonald KC, Atwater T, Ballard R, Carranza A, Cordoba D, Cox C, Diaz-Garcia VM, Francheteau J, Guerrero J, Hawkins J, Haymon R. Hessler R, Juteau T, Kastner M, Larson R, Luyendyk B, Macdougall J.D., Miller S., Normark W, Orcutt J and Rangin C (1980) East pacific rise: hot springs and geophysical experiments. Science 207:1421–1433

    Google Scholar 

  • Tivey MK, Delaney JR (1986) Growth of large sulfide structures on the endeavour segment of the Juan de Fuca Ridge. Earth Planet Sci Lett 77:303–317

    Article  Google Scholar 

  • Von Damm KL, Bischoff JL (1987) Chemistry of hydrothermal solutions from the southern Juan de Fuca Ridge. J Geophys Res 92:11334–11346

    Article  Google Scholar 

  • Williams DL, Von Herzen RP (1974) Heat loss from the earth: new estimate. Geology 2(no 7):327–328

    Google Scholar 

  • Yang K, Scott SD (1996) Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature 383:420–423

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Hekinian .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hekinian, R. (2014). Hydrothermal Activity and Metalliferous Deposits. In: Sea Floor Exploration. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-03203-0_6

Download citation

Publish with us

Policies and ethics