Skip to main content

Adding Real Coefficients to Łukasiewicz Logic: An Application to Neural Networks

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8256)

Abstract

In this paper we shall deal with an extension of Łukasiewicz propositional logic obtained by considering scalar multiplication with real numbers, and we focus on the description of its Lindenbaum algebra, i.e., the algebra of truth functions. We show the correspondence between truth tables of such logic and multilayer perceptrons in which the activation function is the truncated identity.

Keywords

  • Many-valued logic
  • Łukasiewicz logic
  • McNaughton functions
  • Neural Networks
  • MV-algebras
  • Riesz MV-algebras

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-03200-9_9
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-03200-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguzzoli, S., Bova, S., Gerla, B.: Free Algebras and Functional Representation for Fuzzy Logics. In: Cintula, P., Hájek, P., Noguera, C. (eds.) Handbook of Mathematical Fuzzy Logic. Studies in Logic, vol. 38, pp. 713–791. College Publications, London (2011)

    Google Scholar 

  2. Amato, P., Di Nola, A., Gerla, B.: Neural networks and rational McNaughton functions. Journal of Multiple-Valued Logic and Soft Computing 11, 95–110 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et anneaux réticulés. Lectures Notes in Mathematics, vol. 608. Springer (1977)

    Google Scholar 

  4. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer (1982)

    Google Scholar 

  5. Castro, J.L., Trillas, E.: The logic of neural networks. Mathware and Soft Computing 5, 23–27 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of many-valued Reasoning. Kluwer, Dordrecht (2000)

    CrossRef  MATH  Google Scholar 

  7. Dhompongsa, S., Kreinovich, V., Nguyen, H.T.: How to interpret Neural Networks in terms of fuzzy logic? In: Proceedings of VJFUZZY 2001, pp. 184–190 (2001)

    Google Scholar 

  8. Di Nola, A., Leus̨tean, I.: Riesz MV-algebras and their logic. In: Proceedings of EUSFLAT-LFA 2011, pp. 140–145 (2011)

    Google Scholar 

  9. Di Nola, A., Leus̨tean, I.: Łukasiewicz logic and Riesz spaces. Soft Computing (accepter for publication)

    Google Scholar 

  10. Gerla, B.: Rational Łukasiewicz logic and Divisible MV-algebras. Neural Networks World 11, 159 (2001)

    Google Scholar 

  11. Haykin, S.: Neural Neworks – A Comprehensive Foundation. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  12. Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces I. North-Holland, Amsterdam (1971)

    MATH  Google Scholar 

  13. McNaughton, R.: A theorem about infinite-valued sentential logic. The Journal of Symbolic Logic 16, 1–13 (1951)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Mundici, D.: A constructive proof of McNaughton’s theorem in infinite-valued logics. Journal of Symbolic Logic 59, 596–602 (1994)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Mundici, D.: Averaging the truth value Łukasiewicz logic. Studia Logica 55, 113–127 (1995)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Ovchinnikov, S.: Max-Min Representation of Piecewise Linear Functions. Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry 43, 297–302 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Di Nola, A., Gerla, B., Leustean, I. (2013). Adding Real Coefficients to Łukasiewicz Logic: An Application to Neural Networks. In: Masulli, F., Pasi, G., Yager, R. (eds) Fuzzy Logic and Applications. WILF 2013. Lecture Notes in Computer Science(), vol 8256. Springer, Cham. https://doi.org/10.1007/978-3-319-03200-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03200-9_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03199-6

  • Online ISBN: 978-3-319-03200-9

  • eBook Packages: Computer ScienceComputer Science (R0)