Abstract
In this paper we shall deal with an extension of Łukasiewicz propositional logic obtained by considering scalar multiplication with real numbers, and we focus on the description of its Lindenbaum algebra, i.e., the algebra of truth functions. We show the correspondence between truth tables of such logic and multilayer perceptrons in which the activation function is the truncated identity.
Keywords
- Many-valued logic
- Łukasiewicz logic
- McNaughton functions
- Neural Networks
- MV-algebras
- Riesz MV-algebras
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Aguzzoli, S., Bova, S., Gerla, B.: Free Algebras and Functional Representation for Fuzzy Logics. In: Cintula, P., Hájek, P., Noguera, C. (eds.) Handbook of Mathematical Fuzzy Logic. Studies in Logic, vol. 38, pp. 713–791. College Publications, London (2011)
Amato, P., Di Nola, A., Gerla, B.: Neural networks and rational McNaughton functions. Journal of Multiple-Valued Logic and Soft Computing 11, 95–110 (2005)
Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et anneaux réticulés. Lectures Notes in Mathematics, vol. 608. Springer (1977)
Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer (1982)
Castro, J.L., Trillas, E.: The logic of neural networks. Mathware and Soft Computing 5, 23–27 (1998)
Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of many-valued Reasoning. Kluwer, Dordrecht (2000)
Dhompongsa, S., Kreinovich, V., Nguyen, H.T.: How to interpret Neural Networks in terms of fuzzy logic? In: Proceedings of VJFUZZY 2001, pp. 184–190 (2001)
Di Nola, A., Leus̨tean, I.: Riesz MV-algebras and their logic. In: Proceedings of EUSFLAT-LFA 2011, pp. 140–145 (2011)
Di Nola, A., Leus̨tean, I.: Łukasiewicz logic and Riesz spaces. Soft Computing (accepter for publication)
Gerla, B.: Rational Łukasiewicz logic and Divisible MV-algebras. Neural Networks World 11, 159 (2001)
Haykin, S.: Neural Neworks – A Comprehensive Foundation. Prentice-Hall, Englewood Cliffs (1999)
Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces I. North-Holland, Amsterdam (1971)
McNaughton, R.: A theorem about infinite-valued sentential logic. The Journal of Symbolic Logic 16, 1–13 (1951)
Mundici, D.: A constructive proof of McNaughton’s theorem in infinite-valued logics. Journal of Symbolic Logic 59, 596–602 (1994)
Mundici, D.: Averaging the truth value Łukasiewicz logic. Studia Logica 55, 113–127 (1995)
Ovchinnikov, S.: Max-Min Representation of Piecewise Linear Functions. Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry 43, 297–302 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Di Nola, A., Gerla, B., Leustean, I. (2013). Adding Real Coefficients to Łukasiewicz Logic: An Application to Neural Networks. In: Masulli, F., Pasi, G., Yager, R. (eds) Fuzzy Logic and Applications. WILF 2013. Lecture Notes in Computer Science(), vol 8256. Springer, Cham. https://doi.org/10.1007/978-3-319-03200-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-03200-9_9
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03199-6
Online ISBN: 978-3-319-03200-9
eBook Packages: Computer ScienceComputer Science (R0)