Finite Element Analysis of Multi-walled Nanotubes

  • Mokhtar AwangEmail author
  • Ehsan Mohammadpour
  • Ibrahim Dauda Muhammad
Part of the Engineering Materials book series (ENG.MAT.)


There are two types of nanotubes: single-walled nanotubes (SWCNTs) and multiwalled nanotubes (MWCNTs), which differ in the arrangement of their graphene cylinders. SWCNTs have only one single layer of graphene cylinders; while MWCNTs have many layers (approximately 2–50).


  1. 1.
    E.N. Ganesh, “Single -walled and multi walled carbon nanotube structure, synthesis and applications”, in International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN, pp. 2278–3075 (2013)Google Scholar
  2. 2.
    P. Zhang, Y. Huang, H. Gao, K.C. Hwang, Fracture nucleation in single-wall carbon nanotubes under tension: a continuum analysis incorporating interatomic potentials. J. Appl. Mech. 69, 454–458 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    L. Jiang, Y. Huang, H. Jiang, G. Ravichandran, H. Gao, K. Hwang et al., A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force. J. Mech. Phys. Solids 54, 2436–2452 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    H. Tan, L. Jiang, Y. Huang, B. Liu, K. Hwang, The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials. Compos. Sci. Technol. 67, 2941–2946 (2007)CrossRefGoogle Scholar
  5. 5.
    W. Lu, J. Wu, J. Song, K. Hwang, L. Jiang, Y. Huang, A cohesive law for interfaces between multi-wall carbon nanotubes and polymers due to the van der Waals interactions. Comput. Methods Appl. Mech. Eng. 197, 3261–3267 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    T.-C. Lim, The relationship between lennard-jones (12–6) and morse potential functions. Zeitschrift für Naturforschung, 58a, pp. 615–617 (2003)Google Scholar
  7. 7.
    M. W. Hyer, S. R. White, Stress analysis of fiber-reinforced composite materials (DEStech Publications Inc, Lancaster, 2009)Google Scholar
  8. 8.
    M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000)Google Scholar
  9. 9.
    J. Vera-Agullo, A. Glória-Pereira, H. Varela-Rizo, J.L. Gonzalez, I. Martin-Gullon, Comparative study of the dispersion and functional properties of multiwall carbon nanotubes and helical-ribbon carbon nanofibers in polyester nanocomposites. Compos. Sci. Technol. 69, 1521–1532 (2009)CrossRefGoogle Scholar
  10. 10.
    E.T. Thostenson, T.-W. Chou, Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J. Phys. D Appl. Phys. 35, 77–80 (2002)CrossRefGoogle Scholar
  11. 11.
    J.N. Coleman, U. Khan, Y.K. Gun’ko, Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18, 689–706 (2006)CrossRefGoogle Scholar
  12. 12.
    C. Li, T.-W. Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 63, 1517–1524 (2003)CrossRefGoogle Scholar
  13. 13.
    E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes. Science 277, 1997 (1971)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mokhtar Awang
    • 1
    Email author
  • Ehsan Mohammadpour
    • 1
  • Ibrahim Dauda Muhammad
    • 2
  1. 1.Department of Mechanical EngineeringUniversiti Teknologi PetronasSeri IskandarMalaysia
  2. 2.Department of Mechanical EngineeringUniversity of AbujaAbujaNigeria

Personalised recommendations